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Abstract. We study the spectral properties of the transition semigroup of the killed one-
dimensional Cauchy process on the half-line (0,∞) and the interval (−1, 1). This process

is related to the square root of one-dimensional Laplacian A = −
√

− d2

dx2 with a Dirichlet

exterior condition (on a complement of a domain), and to a mixed Steklov problem in the
half-plane. For the half-line, an explicit formula for generalized eigenfunctions ψλ of A is
derived, and then used to construct spectral representation of A. Explicit formulas for the
transition density of the killed Cauchy process in the half-line (or the heat kernel of A in
(0,∞)), and for the distribution of the first exit time from the half-line follow. The formula
for ψλ is also used to construct approximations to eigenfunctions of A in the interval. For
the eigenvalues λn of A in the interval the asymptotic formula λn = nπ

2
− π

8
+ O( 1

n
) is

derived, and all eigenvalues λn are proved to be simple. Finally, efficient numerical methods
of estimation of eigenvalues λn are applied to obtain lower and upper numerical bounds for
the first few eigenvalues up to 9th decimal point.

1. Introduction

Let (Xt), t ≥ 0, be the one-dimensional Cauchy process, that is a one-dimensional symmetric
α-stable process for α = 1. Let us consider the Cauchy process killed upon first exit time
from D for D = (0,∞) and D = (−1, 1). The purpose of this article is to study the spectral
properties of the transition semigroup of this killed process, defined by

PD
t f(x) = Ex (f(Xt) ; Xs ∈ D for all s ∈ [0, t]) , f ∈ Lp(D),

and its infinitesimal generator AD, which is the operator −
√

− d2

dx2 with a Dirichlet exterior

condition (on Dc); see the Preliminaries section for a formal introduction. The key problem
in our paper is the description of eigenfunctions and eigenvalues of AD and PD

t . The study of
the spectral theoretic properties of the semigroups of killed symmetric α-stable processes has
been the subject of many papers in recent years, see for example [1, 2, 3, 14, 15, 16, 18, 19].
Our paper is a continuation of the work of Bañuelos and Kulczycki [1].

In the first part of the paper (Sections 3–7), the identification of the spectral problem for
PD

t and the so-called mixed Steklov problem in two dimensions, a method developed in [1],
is applied for the case of the half-line D = (0,∞). Instead of searching for a function f
satisfying PD

t f(x) = e−λtf(x) for x ∈ D, f(x) = 0 for x ∈ Dc, we solve the equivalent mixed

2000 Mathematics Subject Classification. 60G52, 35J25, 35P05.
The work was supported by the Polish Ministry of Science and Higher Education grant no. N N201 373136.

1
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Steklov problem

∆u(x, y) = 0, x ∈ R, y > 0,(1.1)
∂
∂y
u(x, 0) = −λu(x, 0), x ∈ D,(1.2)

u(x, 0) = 0, x /∈ D,(1.3)

where ∆ = ∂2

∂x2 + ∂2

∂y2 is the Laplace operator in R2. The relation between f and u is here given

by u(x, y) = Exf(Xy). In this way a nonlocal spectral problem for the pseudo-differential
operator on R (or its semigroup (PD

t ) on a domain D) is transformed into a local one for
a harmonic function of two variables, with spectral parameter in the boundary conditions.
From the point of view of stochastic processes, this corresponds to the identification of the
jump-type process (Xt) with the trace left on the horizontal axis by the two-dimensional
Brownian motion. Similar or related methods were also applied e.g. by DeBlassie and
Mendez-Hérnandez [17, 18, 19, 33], and the idea can be traced back to the work of Spitzer [42],
see also [34].

When D = (0,∞), the spectrum of AD is equal to (−∞, 0] and is of continuous type, so
there are no eigenfunctions of AD in L2(D) (this follows easily from scaling properties of AD;
see also Theorem 3 below). It turns out, however, that for all λ > 0 there exist continuous
generalized eigenfunctions ψλ ∈ L∞(D). More precisely, we have PD

t ψλ = e−λtψλ. Using the
identification described in the previous paragraph, an explicit formula for ψλ is derived in
Section 3, see (3.19) and (3.20).

Surprisingly, to our knowledge, there are no earlier works concerning the spectral problem
PD

t f(x) = e−λtf(x) for x ∈ D, f(x) = 0 for x ∈ Dc for the half-line D = (0,∞), or the
equivalent problem (1.1)–(1.3). However, there is an extensive literature concerning the
related sloshing problem in the half-plane, i.e. the problem given by (1.1), (1.2) and the
Neumann condition

∂
∂y
u(x, 0) = 0, x /∈ D,

in place of the Dirichlet one (1.3). The sloshing problem is one of the fundamental problems
in the theory of linear water waves, see e.g. [23] for a historical survey. The explicit solution
of the sloshing problem in the half-plane for D = (0,∞) was first obtained by Friedrichs and
Lewy in 1947 [22], see also [12, 26, 29]. Both methods and results of the Section 3 are closely
related to their counterparts for the sloshing problem in the half-plane.

Sections 4 and 5 are rather technical and the remainder of the article relies on their results.
Certain holomorphic functions play an important role in the derivation of ψλ, and one of
these functions is studied in Section 4. In particular, the Fourier-Laplace transform of ψλ is
derived, see (4.7). The formula for ψλ is of the form ψλ(x) = sin(λx + π

8
) − r(λx), where r

is the Laplace transform of a positive integrable function. In Section 5 we obtain estimates
of the function r.

In Section 6 it is proved that that ψλ yield a generalized eigenfunction expansion of AD for
D = (0,∞) in the sense of [24], see e.g. [35, 41] and the references therein for similar results
for differential operators. In other words, the transformation Πf = 〈f, ψλ〉 is an isometric (up
to a constant) mapping of L2(D) onto L2(0,∞) which diagonalizes AD, ΠADf = −λADf ,
see Theorem 3.

The spectral decomposition and results of Section 4 enable us to derive an explicit formula
for the kernel function pD

t (x, y) of PD
t , i.e. the transition density of the Cauchy process killed
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on exiting D = (0,∞) (or the heat kernel for −
√

− d2

dx2 with Dirichlet exterior condition on

Dc), see Theorem 4 in Section 7. This extends the results of [8, 9, 13], where two-sided
estimates for pD

t (x, y) were obtained (in a more general setting). As a corollary, we obtain
an explicit formula for the density of the distribution of the first exit time from (0,∞), see
Theorem 5. This gives even a new result for 2-dimensional Brownian motion, see Corollary 2.
Namely, we obtain the distribution of some local time of 2-dimensional Brownian motion
killed at some entrance time.

The spectral problem for the interval D = (−1, 1) is studied in the second part of the
article (Sections 8–11). We remark that due to translation invariance and scaling property
of (Xt), the results for (−1, 1) extend easily to any open interval. It is well-known that
there is an infinite sequence of continuous eigenfunction ϕn ∈ D such that ADϕn = −λnϕn

on D, ϕn ≡ 0 on Dc, where 0 < λ1 < λ2 ≤ λ3 ≤ ... → ∞. Each ϕn is either symmetric
or antisymmetric. The study of the properties of ϕn and λn, dates back to the paper of
Blumenthal and Getoor [5], where the Weyl-type asymptotic law was proved for a class of
Markov processes in domains. In [5] (formula (3.6)) it was proved that λn/n → π/2 as
n → ∞. Over the last few years, there have been an increasing amount of research related
to this topic see e.g. [1, 2, 15, 16, 18, 19, 31, 32] and the references therein. In [1] it was
shown that λn ≤ nπ

2
. The best known estimates for general λn, namely nπ

4
≤ λn ≤ nπ

2
,

were proved in [15], Example 5.1, where subordinate Brownian motions in bounded domains
are studied. The simplicity of eigenvalues was studied in Section 5 of [1], where λ2 and λ3

are proved to be simple (simplicity of λ1 is standard), and in [32], where all eigenvalues are
proved to have at most double multiplicity. All these results are improved below.

In Section 8 approximations ϕ̃n to eigenfunctions ϕn are constructed by interpolating the
translated eigenfunction for the half-line ψλ(1+x) and ψλ(1−x) with λ = nπ

2
− π

8
. It is then

shown that ADϕ̃n is nearly equal to −λϕ̃n. This is used in Section 9 to prove that
∣

∣

∣
λn −

(nπ

2
− π

8

)∣

∣

∣
≤ 1

n
, n ≥ 1,

and that the eigenvalues λn are simple, see Theorem 6. Finally, various properties of ϕn are
shown in Section 10, see Corollaries 3–5.

An application of numerical methods for estimation of eigenvalues to our problem is de-
scribed in the last section. To get the upper bounds we use the Rayleigh-Ritz method for the
Green operator, and for the lower bounds the Weinstein-Aronszajn method of intermediate
problems is applied for (1.1)-(1.3). The numerical bounds of ca. 10-digit accuracy are given
by formula (11.1).

Although probabilistic interpretation is the primary source of motivation, we use purely
analytic arguments. In fact, the Cauchy process and related probabilistic notions are only
used in Section 2 to give a concise definition of the killed semigroup (PD

t ), and in Appendix A.

2. Notation and preliminaries

We begin with a brief introduction to the Cauchy process (Xt) and its relation to the Steklov
problem. We only collect the properties used in the sequel; for a more detailed exposition the
reader is referred to [1] or [14, 30]. For an introduction to more general Markov processes, see
e.g. [4, 21, 40]. In the final part of this section, basic facts concerning the Fourier transform,
the Hilbert transform and Paley-Wiener theorems are recalled.
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The one-dimensional Cauchy process (Xt) is the symmetric 1-stable process, that is, the
Lévy process with one-dimensional distributions

Px(Xt ∈ dy) = pt(y − x)dy =
1

π

t

t2 + (y − x)2
dy.

Here Px corresponds to the process starting at x ∈ R; Ex is the expectation with respect
to Px. Clearly, the Px-distributions of (Xt + a) and (bXt) are equal to Px+a-distribution
of (Xt) and Pbx-distribution of (Xbt) respectively; these are the translation invariance and
scaling property mentioned in the Introduction. The transition semigroup of (Xt) is defined
by

Ptf(x) = Exf(Xt) = f ∗ pt(x), f ∈ Lp(R), p ∈ [1,∞], t > 0,

and P0f(x) = f(x). This is a contraction semigroup on each Lp(R), p ∈ [1,∞], strongly
continuous if p ∈ [1,∞), and when f is continuous and bounded, then Ptf converges to f
locally uniformly as t ց 0. The infinitesimal generator A of (Pt) acting on L2(R) is the
square root of the second derivative operator. More precisely, for a smooth function f with
compact support we have

Af(x) = −
√

− d2

dx2 f(x) =
1

π
pv

∫ ∞

−∞

f(y) − f(x)

(y − x)2
dy,

where the integral is the Cauchy principal value.
Throughout this article, D always denotes the interval (−1, 1) or the half-line (0,∞). The

time of the first exit from D is defined by

τD = inf {t ≥ 0 : Xt /∈ D} ,

and the semigroup of the process (Xt) killed at time τD is given by

PD
t f(x) = Ex (f(Xt) ; Xs ∈ D for all s ∈ [0, t]) = Ex (f(Xt) ; t < τD) ,

where t ≥ 0. This is again a well-defined contraction semigroup on every Lp(D) space,
p ∈ [1,∞], strongly continuous if p ∈ [1,∞). If f continuous and bounded in R and vanishes
in (−∞, 0], then PD

t f converges to f locally uniformly as tց 0. The semigroup (PD
t ) admits

a jointly continuous kernel function pD
t (x, y) (t > 0, x, y ∈ D); clearly, pD

t (x, y) ≤ pt(y−x) ≤
1
πt

. By AD we denote the infinitesimal generator of (PD
t ) acting on L2(D). Since this is a

Friedrichs extention on L2(D) of A restricted to the class of smooth functions supported
in a compact subset of D, we sometimes say that AD is the square root of Laplacian with
Dirichlet exterior conditions (on Dc).

Let us describe in more details the connection between the spectral problem for the semi-
group (PD

t ) and the mixed Steklov problem (1.1)–(1.3), established in [1]. The main idea is
to consider the harmonic extension u(x, y) of a function f to the upper half-plane x ∈ R,
y > 0. Let f ∈ Lp(R) for some p ∈ [1,∞], and define

u(x, y) = Pyf(x) =
1

π

∫ ∞

−∞

y

y2 + (z − x)2
f(z)dz.

Then u is harmonic in the upper half-plane R × (0,∞), and if p ∈ [1,∞), then u(·, y)
converges to f in Lp(R) as y ց 0. Conversely, for p ∈ (1,∞), if u(x, y) is harmonic in the
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upper half-plane and the Lp(R) norms of u(·, y) are bounded for y > 0, then u(·, y) converges
in Lp(R) to some f when y ց 0, and u(x, y) = Pyf(x). By the definition,

∂

∂y
u(x, 0) = lim

yց0

Pyf(x) − f(x)

y

pointwise for all x ∈ R. When f is in the domain of A, then the above limit exists in L2(R)
and it is equal to Af .

Our motivation to study the mixed Steklov problem (1.1)–(1.3) comes from the following
simple extension of Theorem 1.1 in [1] to the case of unbounded domains. A partial converse
is given in the proof of Theorem 2 in Section 3.

Proposition 1. Let D = (0,∞) and λ > 0. Suppose that f : R → R is continuous and
bounded, f(x) = 0 for x ≤ 0, and u(x, y) = Pyf(x). If PD

t f(x) = e−λtf(x) for all x ∈ D,
t > 0, then u satisfies (1.1)–(1.3).

Proof. Formulas (1.1) and (1.3) hold true by the definition of u. Since PD
y f(x) = e−λyf(x),

we have

u(x, y)− u(x, 0)

y
=
Pyf(x) − f(x)

y
=
e−λy − 1

y
f(x) −

Pyf(x) − PD
y f(x)

y
.

As y ց 0, the first summand converges to −λf(x). The second one is estimated using
formula (A.2) from Appendix A (see also formula (2.9) in [1]). If 0 < y < x, we have

∣

∣

∣

∣

∣

Pyf(x) − PD
y f(x)

y

∣

∣

∣

∣

∣

≤
∫ ∞

0

py(z − x) − pD
y (x, z)

y
|f(z)|dz

≤ ‖f‖∞
π

∫ ∞

0

min

(

1

x2
,
y

x2z
,
y

xz2

)

dz =
y(2 + log x

y
) ‖f‖∞

πx2
,

and this tends to 0 as y ց 0. Therefore, (1.2) is also satisfied. �

Finally, we briefly recall some standard facts and definitions. The Fourier transform
of a (complex-valued) function f ∈ L1(R) is given by f̂(x) =

∫

f(t)e−itxdt; this can be
continuously extended to Lp(R) whenever 1 ≤ p <∞. For p ∈ (1,∞), the Hilbert transform

of f ∈ Lp(R), denoted Hf , satisfies (Hf )̂ (t) = −f̂(t)(i sign t). This is a bounded linear
operator on Lp(R), and for almost all t,

Hf(t) =
1

π
pv

∫ ∞

−∞

f(s)

t− s
ds.(2.1)

If f is Hölder continuous, then the above formula holds for all t ∈ R and Hf is continuous,
see e.g. [43].

Let C+ = {z ∈ C : Im z > 0} and C+ = {z ∈ C : Im z ≥ 0}; C− and C− are defined in
a similar manner. Let 1 < p < ∞. If F is in the (complex) Hardy space Hp(C+), i.e. F is
holomorphic in C+ and the Lp(R) norms of F (·+ iε) are bounded in ε > 0, then, as εց 0,
F (· + iε) converges in Lp(R) to some f ∈ Lp(R), which is said to be the boundary limit of
F . In this case

Im f = H(Re f) and Re f = −H(Im f).(2.2)

We also have

Hf̃(t) = −Hf(−t), where f̃(t) = f(−t).(2.3)



6 TADEUSZ KULCZYCKI, MATEUSZ KWAŚNICKI, JACEK MA LECKI, AND ANDRZEJ STOS

The following version of Paley-Wiener theorem is important in the sequel, see e.g. [20]. For
p ∈ (1,∞), a function f ∈ Lp(R) is a boundary limit of some function F ∈ Hp(C+) if and

only if f̂ vanishes in (−∞, 0). In this case

F (z) =
1

2π

∫ ∞

0

f̂(x)eizxdx, z ∈ C+.(2.4)

3. Spectral problem in the half-line

Notation. To facilitate reading, in this section we strive to use the following convention. We
use small letters to denote functions of the real variable and capital letters for functions on
the upper half-plane C+. Real-valued functions are denoted by Greek letters, whereas Latin
letters are used for complex-valued functions.

We study the eigenproblem (1.1)–(1.3) for the half-line D = (0,∞) using methods which
were earlier applied to the sloshing problem with semi-infinite dock, see [12, 22, 26]. The
solution u is given as the imaginary part of a holomorphic function F of a complex variable
z = x + iy, x ∈ R, y ≥ 0. Such a function is automatically harmonic, hence (1.1) is satis-
fied. Using the Cauchy-Riemann equations, we may restate (1.2) and (1.3) in the following
equivalent form:

Im(iF ′(x) + λF (x)) = 0 x > 0,(3.1)

ImF (x) = 0 x ≤ 0.(3.2)

Observe that for all ϑ ∈ R and t < 0, the bounded holomorphic functions

F (z) = eiλz+iϑ,

F (z) = etλz−i arctan t

satisfy (3.1), and for for all t > 0 the bounded holomorphic function

F (z) = etλz

satisfies (3.2). This suggests searching a solution of the form:

F (z) = eiλz+iϑ −
∫ 0

−∞
̺(t)etλz−i arctan tdt, Re z ≥ 0, Im z ≥ 0,(3.3)

F (z) =

∫ ∞

0

̺(t)etλzdt, Re z ≤ 0, Im z ≥ 0,(3.4)

where ̺ is an unknown real function, say in some Lp(R), p ∈ (1,∞), and ϑ ∈ R. The values
of F given by (3.3) and (3.4) must agree when Re z = 0, Im z ≥ 0, that is,

∫ ∞

−∞
eiχ(t)̺(t)eitλydt = e−λy+iϑ, y > 0,

where χ(t) = arctan t− = arctan(max(−t, 0)). Replacing λy by −s yields that
∫ ∞

−∞
eiχ(t)̺(t)e−itsdt = es+iϑ, s < 0.(3.5)

The right-hand side is the Fourier transform of g(t) = eiϑ

2π
1

1+it
. Therefore, formula (3.5) is

equivalent to the condition:

the function a(t) = eiχ(t)̺(t) − g(t) satisfies â(s) = 0 for s < 0.(3.6)
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Note that both ̺ and g are in Lp(R), so that â is well-defined and â ∈ Lp(R). The foregoing
remarks can be summarized as follows: any real function ̺ ∈ Lp(R) satisfying (3.6) yields a
solution to the problem (3.1)–(3.2).

By Paley-Wiener theorem, (3.6) is satisfied if and only if a is the boundary limit of a unique
function A in the Hardy space Hp(C+) in the upper half-plane C+ = {z ∈ C : Im z > 0}.
Such a function A can be derived as follows. Later in this section (formula (3.12); see also
Appendix B), a function B holomorphic in C+ and continuous on C+ is defined, such that
iχ(t) −B(t) ∈ R for all t ∈ R. The function

e−B(t)a(t) = eiχ(t)−B(t)̺(t) − e−B(t)g(t)

is therefore the boundary limit of e−B(z)A(z). Note that eiχ(t)−B(t) is real. The function

g(t) = eiϑ

2π
1

1+it
is the boundary limit of a meromorphic function G(z) = eiϑ

2π
1

1+iz
. The function

G has a simple pole at i, so that G(z)(e−B(z) − e−B(i)) is holomorphic in C+. It follows that

e−B(t)a(t) + g(t)(e−B(t) − e−B(i)) = eiχ(t)−B(t)̺(t) − e−B(i)g(t)(3.7)

is a boundary limit of

Ã(z) = e−B(z)A(z) +G(z)(e−B(z) − e−B(i)), z ∈ C+.

Since G and A are inHp(C+), and |e−B(z)| is bounded (see (B.8)), we must have Ã ∈ Hp(C+).

Let G̃(z) = e−iϑ

2π
1

1−iz
. Note that by (3.7), the boundary limit of the function Ã(z)−e−B(i)G̃(z)

(belonging to Hp(C+)) is equal to

eiχ(t)−B(t)̺(t) − e−B(i)g(t) − e−B(i)g(t),(3.8)

which is real for all t ∈ R. The real part of the boundary limit of an Hp(C+) function is
the negative of the Hilbert transform of its imaginary part. Therefore, the function defined
by (3.8) is the Hilbert transform of the constant 0, and so it is identically 0. It follows that

eiχ(t)−B(t)̺(t) = e−B(i)g(t) + e−B(i)g(t) = 2 Re
(

e−B(i)g(t)
)

, t ∈ R.(3.9)

Also, Ã(z) − e−B(i)G̃(z) has a boundary limit 0, so it is identically zero in C+. Hence, for
z ∈ C+,

A(z) = eB(z)
(

Ã(z) −G(z)(e−B(z) − e−B(i))
)

=
e−iϑ

2π

eB(z)−B(i)

1 − iz
− eiϑ

2π

1 − eB(z)−B(i)

1 + iz
.

Since |eB(z)| is bounded by a constant multiple of 1 +
√

|z| (see (B.8)), A defined by the
above formula is in Hp(C+) for any p ∈ (2,∞), and ̺ given by (3.9) is in Lp(R). Also, the
boundary limit of A is the function a defined in (3.6) (this can be verified e.g. by a direct
calculation), so that ̺ indeed is a solution to (3.6).

We now come to the construction of the function B. We want it to be holomorphic in C+

and continuous in C+, and iχ(t) −B(t) is to be real for all t ∈ R. Therefore,

ImB(t) = χ(t) = arctan(t−), t ∈ R.(3.10)

Clearly B is not in Hp(C+), so that ReB(t) cannot be expressed directly as the Hilbert
transform of ImB(t) = χ(t). We can, however, apply the Hilbert transform to ImB′(t) =
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χ′(t), which is an L2(R) function. It follows that

ReB′(t) = −H(ImB′)(t) =
1

π
pv

∫ 0

−∞

1

(t− s)(1 + s2)
ds, t ∈ R,

the integral on the right-hand side being the Cauchy principal value for t < 0. This equation
is studied in Appendix B. It follows that up to an additive constant, which we choose to be
zero, we have ReB(t) = η(t), where η is given by (B.1). By (B.2) and (B.6), for all t ∈ R,

B(t) = iχ(t) + η(t) = i arctan(t−) + log
4
√

1 + t2 − 1

π

∫ t

0

log |s|
1 + s2

ds

= i arctan(t−) +
1

π

∫ 0

−∞

log |t− s|
1 + s2

ds.

(3.11)

This formula is easily extended to complex arguments, whenever Im z ≥ 0, we have

B(z) =
1

π

∫ 0

−∞

log(z − s)

1 + s2
ds,(3.12)

provided that the continuous branch of log is chosen on the upper half-plane C+ (i.e. the
principal branch with log s = log |s| + iπ for s < 0). We emphasize that (3.11) and (3.12)
agree for z = t < 0 (see also Section 4 and Appendix B).

For the explicit formula for ̺, B(i) needs to be computed. By (B.10) and (B.11),

B(i) =
1

π

∫ 0

−∞

log(i− s)

1 + s2
ds =

1

π

∫ ∞

0

log(i+ s)

1 + s2
ds

=
1

2π

∫ ∞

0

log(1 + s2)

1 + s2
ds+

i

π

∫ ∞

0

π
2
− arctan s

1 + s2
ds =

log 2

2
+
iπ

8
.

(3.13)

Now (3.9) yields that

̺(t) = 2eB(t)−iχ(t) Re
(

e−B(i)g(t)
)

= 2eη(t) Re

(

ei(ϑ−π
8
)

2π
√

2

1

1 + it

)

=

√
2

2π
eη(t) cos(ϑ− π

8
) + t sin(ϑ− π

8
)

1 + t2
, t ∈ R.

Since ϑ ∈ R is arbitrary, we conclude that there are two linearly independent solutions for
̺, corresponding to ϑ = π

8
and ϑ = 5π

8
respectively,

̺(t) =

√
2

2π

1

1 + t2
eη(t), and ˜̺(t) =

√
2

2π

t

1 + t2
eη(t).

The solution to (3.1)–(3.2) corresponding to ϑ = π
8

and ̺ as above is therefore given by

F (z) = eiλz+i π
8 −

√
2

2π

∫ 0

−∞

1

1 + t2
eη(t)etλz−i arctan tdt, Re z ≥ 0, Im z ≥ 0(3.14)

F (z) =

√
2

2π

∫ ∞

0

1

1 + t2
eη(t)etλzdt, Re z ≤ 0, Im z ≥ 0.(3.15)

By (B.5), we have ̺ ∈ L1(R), and so F is bounded and continuous. Furthermore, it can

be easily verified that the solution corresponding to ϑ = 5π
8

and ˜̺ is given by F ′(z)
λ

. Since ˜̺
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Figure 1. (a) Graph of ψ1; (b) Graph of the remainder term r(x) = sin(x+
π
8
) − ψ1(x)

decays at infinity as |t|− 1
2 , F ′(z) has a singularity of order |z|− 1

2 at zero and it is not bounded
near 0. For that reason, in the sequel we only study the solution F (z) given by (3.14)–(3.15).

Since e−i arctan t = (1−it)/
√

1 + t2 and eη(t) = e−η(−t)
√

1 + t2 (see (B.3)), we can rewrite (3.14)
as

F (z) = eiλz+i π
8 −

√
2

2π

∫ ∞

0

1 + it

1 + t2
e−η(t)e−tλzdt, Re z ≥ 0, Im z ≥ 0.(3.16)

Therefore, we proved the following theorem.

Theorem 1. The bounded solution of (1.1)–(1.3) for D = (0,∞) is given by

u(x, y) = e−λy sin(λx+ π
8
)

−
√

2

2π

∫ ∞

0

t cos(tλy) − sin(tλy)

1 + t2
exp

(

−1

π

∫ ∞

0

log(t+ s)

1 + s2
ds

)

e−tλxdt
(3.17)

for x ≥ 0, y ≥ 0, and

u(x, y) =

√
2

2π

∫ ∞

0

sin(tλy)

1 + t2
exp

(

1

π

∫ ∞

0

log(t+ s)

1 + s2
ds

)

etλxdt(3.18)

for x ≤ 0 and y ≥ 0.

The main result of this section, stated below, follows from Theorem 1 and a partial converse
to Proposition 1.

Theorem 2. Let D = (0,∞). For λ > 0, the function

ψλ(x) = sin(λx+ π
8
) − rλ(x), x > 0,(3.19)

where

rλ(x) = r(λx) =

√
2

2π

∫ ∞

0

t

1 + t2
exp

(

−1

π

∫ ∞

0

log(t+ s)

1 + s2
ds

)

e−tλxdt,(3.20)

is the eigenfunction of the semigroup (PD
t ) acting on C(D) corresponding to eigenvalue λ.

Proof. With the notation of Theorem 1, we have ψλ(x) = u(x, 0); we extend ψλ to be 0 on
(−∞, 0]. Since u is harmonic and bounded in the upper half-plane, we have Pyψλ(x) = u(x, y)
(y > 0, x ∈ R). Since u satisfies (1.2), for all x > 0, 1

y
(Pyψλ(x) − ψλ(x)) converges to

−λψλ(x) as y ց 0. We will now prove (formula (3.26)) that this convergence is dominated
by an appropriate function.



10 TADEUSZ KULCZYCKI, MATEUSZ KWAŚNICKI, JACEK MA LECKI, AND ANDRZEJ STOS

Below we assume that λ > 0, x > 0 and 0 < y < 1
λ
. By formula (3.17), we have

Pyψλ(x) − e−λyψλ(x)

y
=

−
√

2

2π

∫ ∞

0

t cos(tλy) − sin(tλy) − e−λyt

(1 + t2)y
e−η(t)e−tλxdt.

(3.21)

Since |1 − cos z| ≤ z2

2
, |z − sin z| ≤ z3

3
, |1 − z − e−z| ≤ z2

2
and λy < 1, we have

∣

∣t cos(tλy) − sin(tλy) − e−λyt
∣

∣ ≤ λ2t

(

t2

2
+
t2λy

3
+

1

2

)

y2 < λ2t(1 + t2)y2 .

Using also e−η(t) ≤ eC/π(1 + t2)−
1
4 (see (B.4)), and then (1 + t2) ≥ t2, we obtain

∣

∣

∣

∣

∣

∫ 1
λy

0

t cos(tλy) − sin(tλy) − e−λyt

(1 + t2)y
e−η(t)e−tλxdt

∣

∣

∣

∣

∣

≤ e
C
πλ2y

∫ 1
λy

0

t(1 + t2)

(1 + t2)
5
4

e−tλxdt ≤ e
C
πλ2y

∫ 1
λy

0

√
t e−tλxdt.

(3.22)

Furthermore,

∫ 1
λy

0

√
t e−tλxdt ≤ (λy)−

3
4

∫ ∞

0

t−
1
4 e−tλxdt ≤ Γ(3

4
)

(λ2xy)
3
4

.(3.23)

In a similar manner, but using |t cos(tλy) − sin(tλy) − e−λyt| ≤ t+ tλy + t ≤ 3t, we obtain

∣

∣

∣

∣

∣

∫ ∞

1
λy

t cos(tλy) − sin(tλy) − e−λyt

(1 + t2)y
e−η(t)e−tλxdt

∣

∣

∣

∣

∣

≤ 3e
C
π

∫ ∞

1
λy

t

(1 + t2)
5
4y
e−tλxdt ≤ 3e

C
π

y

∫ ∞

1
λy

t−
3
2 e−tλxdt,

(3.24)

and

∫ ∞

1
λy

t−
3
2 e−tλxdt ≤ (λy)

5
4

∫ ∞

0

t−
1
4 e−tλxdt =

Γ(3
4
)(λy)

5
4

(λx)
3
4

.(3.25)

Formulas (3.21)–(3.25) yield, after simplification, that

∣

∣

∣

∣

Pyψλ(x) − e−λyψλ(x)

y

∣

∣

∣

∣

≤ 2
√

2e
C
π Γ(3

4
)λ

1
2y

1
4

πx
3
4

=
c1(λ)y

1
4

x
3
4

(3.26)

with some constant c1(λ).
We are now going to replace Py by PD

y in (3.26). In Section 5 it is proved (using only the

definition (3.19) and (3.20) of ψλ) that |ψλ(x)| = |ψ1(λx)| ≤ 2
√
λx, see (5.9). This and (A.2)
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yield that for 0 < y < x we have
∣

∣

∣

∣

∣

Pyψλ(x) − PD
y ψλ(x)

y

∣

∣

∣

∣

∣

≤
∫ ∞

0

py(z − x) − pD
y (z − x)

y
|ψλ(z)|dz

≤ 2
√
λ

π

∫ ∞

0

min

(

1

x2
,
y

x2z
,
y

xz2

)√
z dz

=
8
√
λ y(3

√
x−√

y)

3πx2
≤ 8

√
λy

πx
3
2

≤ 8
√
λy

1
4

πx
3
4

.

(3.27)

When 0 < x < y, in a similar manner
∣

∣

∣

∣

∣

Pyψλ(x) − PD
y ψλ(x)

y

∣

∣

∣

∣

∣

≤ 2
√
λ

π

∫ ∞

0

min

(

1

y2
,

1

z2

)√
z dz

=
16
√
λ

3π
√
y
≤ 16

√
λy

1
4

3πx
3
4

.

(3.28)

Finally, by (3.26), (3.27) and (3.28), there is a constant c2(λ) such that
∣

∣

∣

∣

∣

PD
y ψλ(x) − e−λyψλ(x)

y

∣

∣

∣

∣

∣

≤ c2(λ)y
1
4

x
3
4

.(3.29)

For any fixed x > 0 and t > 0, the one-sided derivative of eλtPD
t ψλ(x) with respect to t

equals

∂

∂t+

(

eλtPD
t ψλ(x)

)

= lim
yց0

eλ(t+y)PD
t+yψλ(x) − eλtPD

t ψλ(x)

y

= lim
yց0

eλ(t+y)

∫ ∞

0

pD
t (x, z)

PD
y ψλ(z) − e−λyψλ(z)

y
dz.

Since pD
t (x, z) ≤ pt(z − x) ≤ 1

t
, by (3.29) we have

∣

∣

∣

∣

∣

∫ ∞

0

pD
t (x, z)

PD
y ψλ(z) − e−λyψλ(z)

y
dz

∣

∣

∣

∣

∣

≤
∫ ∞

0

c2(λ)y
1
4

z
3
4

pD
t (x, z)dz

≤ c2(λ)y
1
4

(
∫ ∞

1

pD
t (x, z)dz +

1

t

∫ 1

0

1

z
3
4

dz

)

≤
(

1 +
4

t

)

c2(λ)y
1
4 .

The right hand side tends to zero as y ց 0, so that

∂

∂t+

(

eλtPD
t ψλ(x)

)

= 0

for all t > 0 and x > 0. By (3.29) (with both sides multiplied by eλy), this also holds for t = 0.
Finally, the function eλtPD

t ψλ(x) is continuous with respect to t for each x > 0 (this follows
from weak continuity of pD

t (x, z)dz with respect to t, which is a consequence of stochastic
continuity of the killed Cauchy process; one can also prove this using the explicit formula for
pt and (A.2)). It follows that eλtPD

t ψλ(x) is constant in t ≥ 0, and since PD
0 ψλ(x) = ψλ(x),

this completes the proof. �



12 TADEUSZ KULCZYCKI, MATEUSZ KWAŚNICKI, JACEK MA LECKI, AND ANDRZEJ STOS

Remark 1. Since r(x) > 0, the functions ψλ are clearly not in L2(D), so the above result
does not provide any information about the L2(D) properties of the operators PD

t . This
problem is studied in Section 6.

Remark 2. Also the derivatives ψ′
λ are locally integrable eigenfunctions of PD

t , continuous
in D, but not at 0. As this is not used in the sequel, we omit the proof.

Remark 3. The functions ψλ can be effectively computed by numerical integration. In-
deed, (B.2), (B.6) and the identity

∫ t

0

log u

1 + u2
du = arctan t log t+

i

2
(Li2(it) − Li2(−it)),

where Li2(z) is the dilogarithm function, yield that

ψλ(x) = sin(λx+ π
8
) −

√
2

2π

∫ ∞

0

t1+
arctan t

π

(1 + t2)
5
4

exp

(

i

2π
(Li2(it) − Li2(−it))

)

e−tλxdt.

4. Properties of the function B

In this section we study the properties of the function B. As an interesting corollary, the
Laplace transform of the eigenfunctions ψλ is computed.

The function B defined by (3.12) extends to a holomorphic function on C \ (−∞, 0],

satisfying B(z̄) = B(z) (see also Appendix B). Therefore B is defined on whole C, it is
holomorphic in C \ (−∞, 0] with a branch cut on (−∞, 0], and it is continuous on C+. The
following properties of B will play an important role.

When Im z > 0, we have

B(z) +B(−z) =
1

π

∫ 0

−∞

log(z − s)

1 + s2
ds+

1

π

∫ 0

−∞

log(−z − s)

1 + s2
ds

=
1

π

∫ ∞

0

log(z + s)

1 + s2
ds+

1

π

∫ 0

−∞

log(z + s) − iπ

1 + s2
ds

=
1

π

∫ ∞

−∞

log(z − s)

1 + s2
ds− iπ

2
.

On the right-hand side, the function s 7→ log(z − s), holomorphic (and therefore harmonic)
in C−, is integrated against the Poisson kernel of the lower half-plane p1(s) = 1

π
1

1+s2 . The

result is the value of log(z − s) at s = −i. It follows that

B(z) +B(−z) = log(z − (−i)) − iπ

2
= log(1 − iz).

By B(z̄) = B(z) we get B(z) +B(−z) = log(1 + iz) whenever Im z < 0, and so

eB(z) = (1 − izσ(z))e−B(−z),(4.1)

where σ(z) = 1 when Im z > 0 and σ(z) = −1 when Im z < 0. A similar relation for η was
used earlier in (3.16), see also (B.3). By continuity of B(z) in C+ the formula (4.1) is also
valid for z ∈ R if we let σ(z) = 1 for z < 0 and σ(z) = −1 for z > 0. For completeness, we
let σ(0) = 0.
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By (3.14), (3.20), the relation between F , ψλ and rλ, and using B(t) = η(t) + i arctan t−,

r(x) =

√
2

2π

∫ ∞

0

τ(t)e−txdt, where τ(t) = Im
eB(−t)

1 + t2
.(4.2)

Note that by the definition, τ(t) = 0 for t ≤ 0. In the sequel, we need the Hilbert transform
of τ , which can be computed as follows. The function eB(z)/(1 + z2) is meromorphic in the
upper half-plane with a simple pole at i, so that the function

eB(z)

1 + z2
− 1

2

eB(i)

1 + iz
− 1

2

eB(i)

1 − iz

is holomorphic in C+. In fact it is in Hp(C+) for p ∈ (1,∞), see (B.8). Its boundary limit
on R is equal to

eB(t)

1 + t2
− 1

2

eB(i)

1 + it
− 1

2

eB(i)

1 − it
=
eB(t) −

√
2 cos π

8
− t

√
2 sin π

8

1 + t2
,

and the imaginary part of this function is just τ(−t). Therefore, the Hilbert transform of
τ(−t) is the negative of the real part of the above function. It follows by (2.3) that for t ∈ R,

Hτ(t) = Re
eB(−t) −

√
2 cos π

8
+ t

√
2 sin π

8

1 + t2
.(4.3)

We are now able to compute the Laplace transform Lψλ of ψλ. By a direct computation,
we have

∫ ∞

0

sin(x+ π
8
)e−txdx =

cos π
8

+ t sin π
8

1 + t2
, t > 0.(4.4)

On the other hand, by Fubini’s theorem and (4.2),
∫ ∞

0

r(x)e−txdx =

√
2

2π

∫ ∞

0

τ(s)

t+ s
ds = −

√
2

2
Hτ(−t), t ≥ 0.

By (4.3) we have
∫ ∞

0

r(x)e−txdx = −
√

2

2

eB(t)

1 + t2
+

cos π
8

+ t sin π
8

1 + t2
, t ≥ 0.(4.5)

In particular,
∫ ∞

0

r(x)dx = cos
π

8
−

√
2

2
.(4.6)

Formulas (4.4) and (4.5) give

Lψ1(t) =

∫ ∞

0

ψ1(x)e
−txdx =

√
2

2

eB(t)

1 + t2
, t > 0.

By scaling and the uniqueness of the holomorphic continuation, we obtain the following
result.

Corollary 1. The Laplace transform of ψλ is equal to

Lψλ(z) =

∫ ∞

0

ψλ(x)e
−zxdx =

√
2

2

λeB( z
λ
)

λ2 + z2
, Re z > 0,(4.7)

where B(z) is given by (3.12).
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5. The remainder term

This section is devoted to a detailed analysis of the remainder term rλ, see (3.20). Recall
that rλ(x) = r(λx), where

r(x) =

√
2

2π

∫ ∞

0

t

(1 + t2)
5
4

exp

(

1

π

∫ t

0

log s

1 + s2
ds

)

e−txdt.(5.1)

Since r is the Laplace transform of a positive function, it is totally monotone, i.e. all functions
(−1)nr(n) are nonnegative and monotonically decreasing. In most of our estimates we simply

use the inequality −C ≤
∫ t

0
log s
1+s2ds ≤ 0 for t > 0 and formula (B.12) from Appendix B. The

L1(R) norm of r, however, we already calculated in (4.6),

∫ ∞

0

r(x)dx = cos
π

8
−

√
2

2
∈ (0.216, 0.217).(5.2)

Since 1
t+s

≤ 1
2
√

ts
, by Fubini’s theorem,

∫ ∞

0

(r(x))2dx ≤ 1

2π2

∫ ∞

0

∫ ∞

0

t

(1 + t2)
5
4

s

(1 + s2)
5
4

1

t+ s
dtds

≤ 1

4π2

(

∫ ∞

0

√
t

(1 + t2)
5
4

dt

)2

=
(Γ(3

4
))2

π(Γ(1
4
))2

< 0.037.

(5.3)

In a similar manner, 1
t+s

≥ 1√
1+t2

√
1+s2 , so that

∫ ∞

0

(r(x))2dx ≥ e−
2C
π

2π2

(

∫ ∞

0

t

(1 + t2)
7
4

dt

)2

=
2e−

2C
π

9π2
> 0.012.(5.4)

For x > 0, we have

r(x) =

√
2

2π

∫ ∞

0

t

(1 + t2)
5
4

exp

(

1

π

∫ t

0

log s

1 + s2
ds

)

e−txdt

≤
√

2

2π

∫ ∞

0

te−txdt ≤
√

2

2πx2
.

(5.5)

In a similar manner,

(−1)nr(n)(x) ≤
√

2

2π

(n+ 1)!

xn+2
.(5.6)

Also,

r(x) ≤ r(0) = sin π
8

=

√

2 −
√

2

2
< 0.383,(5.7)

and

−r′(x) ≤
√

2

2π

∫ ∞

0

e−tx

√
t
dt =

1√
2πx

.(5.8)
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It follows that for x > 0,

|ψ1(x)| ≤
∣

∣sin(x+ π
8
) − sin π

8

∣

∣ + |r(x) − r(0)|

≤ x+

∫ x

0

|r′(y)|dy ≤ x+

√

2x

π
.

Since clearly |ψ1(x)| ≤ | sin(x+ π
8
)| + |r(x)| ≤ 2, we have

|ψ1(x)| ≤ min

(

x+

√

2x

π
, 2

)

≤ min
(

2
√
x, 2
)

.(5.9)

This property was already used in Section 3 in the proof of Theorem 2.
Finally, since r′ < 0, the first zero of ψ′

λ is greater than π
8λ

. It follows that

‖ψλ‖∞ ≤ 1 + rλ(
π
8λ

) = 1 + r(π
8
) ≤ 1 +

√
2

2π

∫ ∞

0

te−
π
8
t

(1 + t2)
5
4

dt < 1.14;(5.10)

for the last inequality, integrate by parts the left hand side of formula 3.387(7) in [25]. The
estimate (5.10) is only used in Corollary 5, where a weaker version of (5.10) would only
result in a larger constant in (10.2). In fact, for the present constant 3, we only need that
‖ψλ‖ ≤ 1.19, which is easily obtained by estimating (1 + t2)−5/4 in the integrand in (5.10)
by a constant on each of the intervals [k

2
, k+1

2
] with k = 0, 1, ..., 7, and [4,∞).

6. Spectral representation of the transition semigroup for the half-line

Let D = (0,∞). In this section we study the L2(D) properties of the operators PD
t . For

f ∈ Cc(D), define

Πf(x) =

∫ ∞

0

f(λ)ψλ(x)dλ, x ∈ D,(6.1)

where ψλ = sin(λx+ π
8
) − rλ(x) is given by (3.19) and (3.20). Note that

F1(x) =

∫ ∞

0

f(λ) sin(λx+ π
8
)dλ, x ∈ D,

satisfies ‖F1‖2 ≤ c1 ‖f‖2. Also, for

F2(x) =

∫ ∞

0

f(λ)rλ(x)dλ, x ∈ D,

we may apply (5.5) and (5.7) to obtain
∫ ∞

0

(F2(x))
2dx ≤

∫ ∞

0

∫ ∞

0

∫ ∞

0

|f(µ)||f(λ)|r(µx)r(λx)dµdλdx

≤
∫ ∞

0

∫ ∞

0

(
∫ ∞

0

c2
(1 + µx)2(1 + λx)2

dx

)

|f(µ)||f(λ)|dµdλ

≤
∫ ∞

0

∫ ∞

0

(
∫ ∞

0

c2
(1 + (µ+ λ)x)2

dx

)

|f(µ)||f(λ)|dµdλ

= c2

∫ ∞

0

∫ ∞

0

|f(µ)||f(λ)|
µ+ λ

dµdλ,
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which is bounded by c2π ‖f‖2 by Hardy-Hilbert’s inequality. It follows that ‖Πf‖2 =
‖F1 + F2‖2 ≤ c3 ‖f‖2, and therefore Π can be continuously extended to a unique bounded
linear operator on L2(D).

For f ∈ Cc(D), pD
t (x, y)f(λ)ψλ(y) is integrable in (y, λ) ∈ D ×D, so that by Theorem 2,

PD
t Πf(x) =

∫ ∞

0

e−λtf(λ)ψλ(x)dλ, x ∈ D.(6.2)

Let f, g ∈ Cc(D) and define fk(λ) = e−kλtf(λ), gk(λ) = e−kλtg(λ). From (6.2) it follows that
PD

t Πfk = Πfk+1 and PD
t Πgk = Πgk+1. Since the operators PD

t are self-adjoint, we have
∫ ∞

0

Πf(x)Πg(x)dx =

∫ ∞

0

PD
t Πf−1(x)Πg(x)dx

=

∫ ∞

0

Πf−1(x)P
D
t Πg(x)dx =

∫ ∞

0

Πf−1(x)Πg1(x)dx.

By induction,
∫ ∞

0

Πf(x)Πg(x)dx =

∫ ∞

0

Πf−k(x)Πgk(x)dx.

Suppose that supp f ⊆ (0, λ0) and supp g ⊆ (λ0,∞). Then we have
∫ ∞

0

Πf(x)Πg(x)dx =

∫ ∞

0

Π(e−kλ0tf−k)(x)Π(ekλ0tgk)(x)dx.

Both e−kλ0tf−k and ekλ0tgk tend to zero uniformly as k → ∞, and so Π(e−kλ0tf−k) and
Π(ekλ0tgk) converge to zero in L2(D). We conclude that Πf and Πg are orthogonal in
L2(D). By an approximation argument, this is true for any f, g ∈ L2(D), provided that
f(λ) = 0 for λ ≥ λ0 and g(λ) = 0 for λ ≤ λ0.

Define

µ(A) =

∫ ∞

0

(Π1A(x))2dx, A ⊆ D.

Clearly

µ(A) ≤ c3 ‖1A‖2
2 = c3|A|, A ⊆ D.

Whenever A ⊆ (0, λ0) and B ⊆ (λ0,∞), we have

µ(A ∪B) =

∫ ∞

0

(Π1A(x))2dx+

∫ ∞

0

(Π1B(x))2dx+ 2

∫ ∞

0

Π1A(x)Π1B(x)dx

= µ(A) + µ(B).

Finally, when A =
⋃∞

n=1An, where A1 ⊆ A2 ⊆ ... and |A| < ∞, the sequence 1An
converges

in L2(D) to 1A as n → ∞. Hence Π1An
converges to Π1A in L2(D), and so µ(A) =

limn→∞ µ(An). It follows that µ is an absolutely continuous measure on (0,∞). By an
approximation argument, we have

∫ ∞

0

Πf(x)Πg(x)dx =

∫ ∞

0

f(λ)g(λ)µ(dλ)

for any f, g ∈ L2(D).
Note that ψλ(qx) = ψλ/q(x), and therefore Πfq(x) = qΠf(qx), where fq(x) = f(x

q
). It

follows that µ(qA) = qµ(A) and so µ must be a multiple of the Lebesgue measure on (0,∞),
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say µ(A) = c4|A|. This result is a version of Plancherel’s theorem, where Fourier transform
is replaced by Π:

∫ ∞

0

Πf(x)Πg(x)dx = c4

∫ ∞

0

f(λ)g(λ)dλ

for any f, g ∈ L2(D).
The constant c4 can be determined by considering f(λ) = 1√

q
1[1,1+q](λ), q > 0. We then

have ‖f‖2 = 1. On the other hand,

Πf(x) =
1

x
√
q

(

cos(x+ π
8
) − cos((1 + q)x+ π

8
)
)

− 1√
q

∫ 1+q

1

r(λx)dλ.

The L2(D) norm of the first summand converges to
√

π
2

as q ց 0, just as in the case of the
Fourier sine transform. The second summand is bounded by

√
qr(x) and so it converges to

zero in L2(D). It follows that c4 = π
2
. The Plancherel’s theorem can be therefore written as

∫ ∞

0

Πf(x)Πg(x)dx =
π

2

∫ ∞

0

f(λ)g(λ)dλ(6.3)

In particular,
√

2
π

Π is an isometry on L2(D). Since ψλ(x) = ψx(λ), for f, g ∈ Cc(D) (and

therefore for any f, g ∈ L2(D)) we also have
∫ ∞

0

Πf(x)g(x)dx =

∫ ∞

0

f(λ)Πg(λ)dλ,

which combined with (6.3) yields that Π2f = π
2
f . We collect the above results in the

following theorem.

Theorem 3. The operator
√

2
π

Π : L2(D) → L2(D) gives a spectral representation of AD

and the semigroup (PD
t ), acting on L2(D), where D = (0,∞); that is, for any f ∈ L2(D),

(a) ‖f‖2 =
√

2
π
‖Πf‖ (Plancherel’s theorem);

(b) ΠPD
t f(λ) = e−λtΠf(λ);

(c) f is in the domain of AD if and only if λΠf(λ) is square integrable;
(d) ΠADf(λ) = −λΠf(λ).

Furthermore, Π2 = π
2

Id (inversion formula).

7. Transition density for the half-line

The aim of this section is to compute an explicit formula of the transition density pD
t (x, y)

of the Cauchy process killed on exiting a half-line D = (0,∞), or the heat kernel for AD.
Let us note that the transition density of the Brownian motion killed on exiting a half-line

(0,∞) equals 1√
2πt
e−

|x−y|2

2t − 1√
2πt
e−

|x+y|2

2t , which follows from the reflection principle. For

the Cauchy process we cannot use the reflection principle and the computation of pD
t (x, y)

requires using much more complicated methods.

Theorem 4. For D = (0,∞) and any g ∈ Lp, p ∈ [1,∞], we have

PD
t g(x) =

∫ ∞

0

pD
t (x, y)g(y)dy, t, x > 0,(7.1)
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where

pD
t (x, y) =

1

π

t

t2 + (x− y)2
− 1

xy

∫ t

0

f( s
x
)f( t−s

y
)

s
x

+ t−s
y

ds, t, x, y > 0,(7.2)

and

f(s) =
1

π

s

1 + s2
exp

(

1

π

∫ ∞

0

log(s+ w)

1 + w2
dw

)

, s > 0.(7.3)

Remark 4. Note that for s > 0, f is positive continuous and bounded. This follows by the
fact that f(s) = 1

π
s

1+s2 e
η(s) and (B.4). The function pD

t (x, y) can be effectively computed by
numerical integration. Indeed, by the same arguments as in Remark 3 we have

f(s) =
1

π

s1− arctan(s)
π

(1 + s2)
3
4

exp

(−i
2π

(Li2(is) − Li2(−is))
)

,

where Li2 is the dilogarithm function.

Proof of Theorem 4. For g ∈ Cc(D) we have ΠPD
t g(λ) = e−λtΠg(λ) (see (6.1) and Theo-

rem 3). Applying Π−1 = 2
π
Π to both sides of this identity yields

PD
t g(x) =

2

π

∫ ∞

0

e−λtΠg(λ)ψλ(x)dλ =
2

π

∫ ∞

0

∫ ∞

0

e−λtψλ(x)ψλ(y)g(y)dydλ.

By the Fubini’s theorem, (7.1) holds with

pD
t (x, y) =

2

π

∫ ∞

0

ψλ(x)ψλ(y)e
−λtdλ.(7.4)

By an approximation argument, (7.1) holds for g ∈ Lp(R) with any p ∈ [1,∞]. We will now
prove (7.2).

Suppose first that x < y, and let t = t1 + t2, t1, t2 > 0. By Plancherel’s theorem and
identities ψλ(x) = ψx(λ), Lψy(z) = Lψy(z̄), we have

pD
t (x, y) =

2

π

∫ ∞

0

(ψx(λ)e−t1λ)(ψy(λ)e−t2λ)dλ

=
1

π2

∫ ∞

−∞
Lψx(t1 + is)Lψy(t2 − is) ds =

1

2πi

∫ t1+i∞

t1−i∞
R(z)dz,

(7.5)

where (see (4.7))

R(z) =
2

π
Lψx(z)Lψy(t− z) =

1

π

xy exp(B( z
x
) +B( t−z

y
))

(x2 + z2)(y2 + (t− z)2)
.

Note that R is defined on C and it is meromorphic in C\((−∞, 0]∪ [t,∞)) with simple poles
at ±ix and t ± iy. Let z ∈ C \ [0, t]. By (4.1) and the identity (1 + izσ(z))(1 − izσ(z)) =
1 + (zσ(z))2 = 1 + z2, we have for all z ∈ C,

R(z) =
1

π

(

1 − i z
x
σ( z

x
)
)(

1 − i t−z
y
σ( t−z

y
)
)

exp(−B(− z
x
) −B(− t−z

y
))

xy
(

1 + z2

x2

)(

1 + (t−z)2

y2

)

=
1

π

exp(−B(− z
x
) −B(− t−z

y
))

xy
(

1 + i z
x
σ( z

x
)
)(

1 + i t−z
y
σ( t−z

y
)
) .
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Since σ( t−z
y

) = −σ( z
x
) for z ∈ C \ [0, t], it follows that for z ∈ C \ [0, t],

R(z) =
exp(−B(− z

x
) −B(− t−z

y
))

πxy
(

z
x

+ t−z
y

)

(

z
x

1 + i z
x
σ( z

x
)

+

t−z
y

1 + i t−z
y
σ( t−z

y
)

)

.

We therefore have R(z) = R1(z) +R2(z) for z ∈ C \ [0, t], where, again using (4.1),

R1(z) =
exp(−B(− z

x
) −B(− t−z

y
))

πxy
(

z
x

+ t−z
y

) ·
z
x

1 + i z
x
σ( z

x
)

=
exp(B( z

x
) −B(− t−z

y
))

πxy
(

z
x

+ t−z
y

) ·
z
x

1 + z2

x2

,

(7.6)

and

R1(z) =
exp(B( z

x
) +B( t−z

y
))

πxy
(

z
x

+ t−z
y

) ·
z
x

1 + z2

x2

· 1

1 − i t−z
y
σ( t−z

y
)
.(7.7)

Also, in a similar manner,

R2(z) =
exp(−B(− z

x
) +B( t−z

y
))

πxy
(

z
x

+ t−z
y

) ·
t−z
y

1 + (t−z)2

y2

,(7.8)

and

R2(z) =
exp(B( z

x
) +B( t−z

y
))

πxy
(

z
x

+ t−z
y

) ·
t−z
y

1 + (t−z)2

y2

· 1

1 − i z
x
σ( z

x
)
.(7.9)

The only zero of z
x

+ t−z
y

is z = tx
x−y

< 0. Hence R1(z) is holomorphic in the set {Re z > 0} \
[0, t] (by (7.6)), bounded in the neighborhood of [0, t], and it decays as |z|−2 at infinity
(by (B.9)). Also, R2(z) is meromorphic in the set {Re z < t} \ [0, t] (by (7.8)) with a simple
pole at tx

x−y
, bounded near [0, t], and it decays as |z|−2 at infinity.

For n = 1, 2, ... let γ be the positively oriented contour consisting of:

• two vertical segments γ1 =
[

t1 − ni, t1 − i
n

]

, γ5 =
[

t1 + i
n
, t1 + ni

]

,

• two horizontal segments γ2 =
[

t1 − i
n
,− i

n

]

, γ4 =
[

i
n
, t1 + i

n

]

,

• two semi-cirles γ3 =
{

|z| = 1
n
, Re z ≤ 0

}

and γ6 = {|z − t1| = n, Re z ≤ t1}.
Clearly,

∫

γ1∪γ5
R2(z)dz converges to

∫ t1+i∞
t1−i∞ R2(z)dz as n→ ∞. The integrals over γ3 and γ6

converge to zero by the properties of R2. Finally, by (7.9),
∫

γ2∪γ4

R2(z)dz →
∫ t1

0

exp(B( s
x
) +B( t−s

y
))

πxy
(

s
x

+ t−s
y

) ·
t−s
y

1 + (t−s)2

y2

(

1

1 − i s
x

− 1

1 + i s
x

)

ds

=

∫ t1

0

2πif( s
x
)f( t−s

y
)

xy
(

s
x

+ t−s
y

) ds.

Therefore, by the residue theorem,

1

2πi

∫ t1+i∞

t1−i∞
R2(z)dz = −

∫ t1

0

f( s
x
)f( t−s

y
)

xy
(

s
x

+ t−s
y

)ds+ Res(R2,
tx

x−y
).(7.10)
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In a similar manner, using (7.7) and analogous contours γ consisting of two segments of the
line Re z = t1, two segments parallel to [t1, t], and two semi-circles centered at t (the small
one) and t1 (the large one), both contained in {Re z ≥ t1}, we obtain that

1

2πi

∫ t1+i∞

t1−i∞
R1(z)dz = −

∫ t

t1

f( s
x
)f( t−s

y
)

xy
(

s
x

+ t−s
y

)ds.(7.11)

Therefore, (7.5), (7.10) and (7.11) yield that

pD
t (x, y) = − 1

xy

∫ t

0

f( s
x
)f( t−s

y
)

s
x

+ t−s
y

ds+ Res(R2,
tx

x−y
) .

For z = tx
x−y

we have z
x

= t
x−y

= − t−z
y

. Therefore, by (7.8) we get

Res(R2,
tx

x−y
) =

1

π(y − x)
·

− t
x−y

1 + t2

(x−y)2

=
1

π

t

t2 + (x− y)2
,

and (7.2) follows for x < y.
When x > y, simply note that pD

t (x, y) = pD
t (y, x) (see (7.4) or e.g. [14], Theorem 2.4),

and that the right-hand side of (7.2) has the same symmetry property (this follows by a
substitution s = t− v). Finally, for x = y simply use the continuity of pD

t (x, y) and f . �

For the next result, we need the following simple observation, similar to the derivation
of (4.3). By (4.1) we have Im e−B(−s) = − s

1+s2 e
B(s) for s > 0. Hence the function f defined

by (7.3) satisfies

f(s) =
1

π

s

1 + s2
eη(s) =

1

π

s

1 + s2
eB(s) = −1

π
Im e−B(−s), s > 0.

If we extend f by f(s) = 0 for s < 0, then f(−s) = 1
π

Im e−B(s) for all real s. Since e−B(z) is
in Hp(C+) for p ∈ (2,∞) (see (B.8)), the Hilbert transform of f is given by (see (2.3))

Hf(s) = −1

π
Re e−B(−s) = −1

π
e−η(−s), s ∈ R.

It follows that

Hf(−s) = − 1

π2

s

1 + s2

1

f(s)
, s > 0, and Hf(0) = −1

π
.(7.12)

Theorem 5. For D = (0,∞), we have

Px(τD ∈ dt) =
1

π

x

t2 + x2
exp

(

1

π

∫ ∞

0

log( t
x

+ w)

1 + w2
dw

)

dt.(7.13)

Using the function f defined in (7.3), we have Px(τD ∈ dt) = 1
t
f( t

x
)dt.

Proof. By Theorem 4 we have

Px(τD > t) =

∫ ∞

0

pD
t (x, y)dy

=
1

π

∫ ∞

0

t

t2 + (x− y)2
dy −

∫ t

0

∫ ∞

0

1

xy

f( s
x
)f( t−s

y
)

s
x

+ t−s
y

dyds.

(7.14)
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By a substitution w = (t− s)/y we obtain

∫ ∞

0

1

xy

f( s
x
)f( t−s

y
)

s
x

+ t−s
y

dy =
f( s

x
)

x

∫ ∞

0

f(w)

w( s
x

+ w)
dw

=
f( s

x
)

s

(
∫ ∞

0

f(w)

w
dw −

∫ ∞

0

f(w)
s
x

+ w
dw

)

.

The right-hand side equals π
s
f( s

x
)(−Hf(0) +Hf(− s

x
)). This, (7.12) and (7.14) give

Px(τD > t) =
1

π

∫ ∞

0

t

t2 + (x− y)2
dy −

∫ t

0

f( s
x
)

s
ds+

1

π

∫ t

0

x

x2 + s2
ds.

By substitution v = x− y in the first integral and v = xt/s in the third one,

Px(τD > t) =
1

π

∫ x

−∞

t

t2 + v2
dv −

∫ t

0

f( s
x
)

s
ds+

1

π

∫ ∞

x

t

t2 + v2
dv

= 1 −
∫ t

0

f( s
x
)

s
ds.

The result follows by differentiation and (7.3). �

Remark 5. Theorem 5 can also be obtained in a more explicit manner. In fact, by scaling
properties of Xt, we have Px(τD > t) = g(x

t
) for some function g continuous in R, vanishing

on (−∞, 0]. Furthermore, Px(τD > t) satisfies the heat equation in D, i.e. ∂
∂t

Px(τD >

t) = −
√

− d2

dx2 Px(τD > t). For t = 1 this gives −xg′(x) = −
√

− d2

dx2 g(x), x > 0. Since

−
√

− d2

dx2 g = Hg′, we have Hg′(s) = −sg′(s) for s > 0.

Let h(s) = 1
s
g′(−1

s
), h(0) = 0. Then it can be shown that h is continuous on R, and by the

definition (2.1) of the Hilbert transform, Hh(s) = −1
s
Hg′(−1

s
). It follows that h(s) = sHh(s)

for s < 0, and h(s) = 0 for s ≥ 0. Therefore Hh−ih is a boundary limit of some holomorphic
function in C+, and (Hh(s) − ih(s))e−i arctan s− is real for all s ∈ R. This problem can be
solved using the method applied in Section 3, and the solution is Hh(s) − ih(s) = ce−B(s)

with some c ∈ R. Therefore g′(s) = −1
s
h(−1

s
) = c

s
Im e−B(1/s) for s > 0, and finally

Px(τD ∈ dt) = − x
t2
g′(x

t
) = − c

t
Im e−B(t/x),

which agrees with (7.13) when c = 1
π
. The details of this alternative argument are left to

the interested reader.

Remark 6. The integral of pD
t (x, y) with respect to t ∈ (0,∞) is the Green function of (Xt)

on the half-line, given by the well-known explicit formula of M. Riesz, see e.g. [6]. Also,
the distribution of X(τD) (and even the joint distribution of τD and X(τD)) is determined
by pD

t (x, y), see [27]. Explicit formulas for Green functions and exit distributions for some
related processes in half-lines and intervals were found recently in [10, 11].

Theorem 5 implies a new result for the 2-dimensional Brownian motion. Namely we
obtain the distribution of some local time of the 2-dimensional Brownian motion killed at
some entrance time. For the 1-dimensional Brownian motion similar results were widely
studied and are usually called Ray-Knight theorems [28, 36, 38].
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Corollary 2. Let Bt = (B
(1)
t , B

(2)
t ) be the 2-dimensional Brownian motion and L(t) =

limε→0+
1
2ε

∫ t

0
χ(−ε,ε)(B

(2)
s ) ds be the local time of Bt on the line (−∞,∞) × {0}. Let A =

(−∞, 0] × {0} and TA = inf {t ≥ 0 : B(t) ∈ A} be the first entrance time for A. Then for
any x > 0 we have

P (x,0)(L(TA) ∈ dt) =
1

π

x

x2 + t2
exp

(

1

π

∫ ∞

0

log
(

t
x

+ s
)

1 + s2
ds

)

dt.

For (x, y) ∈ R2, y 6= 0 and t ≥ 0 we have

P (x,y)(L(TA) ≤ t) =
1

π

∫ 0

−∞

|y|
y2 + (x− u)2

du

+
1

π

∫ ∞

0

|y|
y2 + (x− u)2

P (u,0)(L(TA) ≤ t) du.

Proof. Let ηt = inf{s > 0 : L(s) > t} be the inverse of the local time L(t). It is well known
(see e.g. [42]) that the 1-dimensional Cauchy process Xt can be identified with B(1)(ηt).
With this relation, we have L(TA) = τ(0,∞), where τ(0,∞) = inf {t ≥ 0 : Xt /∈ (0,∞)}. This
and Theorem 5 give the first equality. The second equality follows by the harmonicity of
(x, y) → P (x,y)(L(TA) ≤ t) in {(x, y) ∈ R2 : y > 0} and in {(x, y) ∈ R2 : y < 0}. �

8. Approximation to eigenfunctions on the interval

In this section the intervalD = (−1, 1) is studied. Let n be a positive integer and µn = nπ
2
−π

8
.

Our goal is to show that µn is close to λn, the n-th eigenvalue of the semigroup (PD
t ).

Let q be the function equal to 0 on (∞,−1
3
) and to 1 on (1

3
,∞), defined by (C.1) in Ap-

pendix C. We construct approximations to eigenfunctions of (PD
t ) by combining the eigen-

functions ψµn
(1 + x) and ψµn

(1 − x) for half-line, studied in Section 3. For a symmetric
eigenfunction, when n is odd, let

ϕ̃n(x) = q(−x)ψµn
(1 + x) + q(x)ψµn

(1 − x)

= (−1)
n−1

2 cos(µnx)1D(x) − q(−x)rµn
(1 + x) − q(x)rµn

(1 − x).
(8.1)

For an antisymmetric eigenfunction, when n is even, we define

ϕ̃n(x) = q(−x)ψµn
(1 + x) − q(x)ψµn

(1 − x)

= (−1)
n
2 sin(µnx)1D(x) − q(−x)rµn

(1 + x) + q(x)rµn
(1 − x).

(8.2)

Lemma 1. With the above definitions,

‖ADϕ̃n + µnϕ̃n‖2 <

√

1.21 +
8.00

µn

+
13.66

µ2
n

· 1

µn

.(8.3)

Proof. Note that we have

ϕ̃n(x) − ψµn
(1 + x) = −(1 − q(−x))ψµn

(1 + x) − (−1)nq(x)ψµn
(1 − x)

= −q(x)(ψµn
(1 + x) + (−1)nψµn

(1 − x))

= q(x)(rµn
(1 + x) + (−1)nrµn

(1 − x)) − sin(µn(1 + x) + π
8
)1[1,∞)(x).
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Denote h(x) = sin(µn(1 + x) + π
8
)1[1,∞)(x) and f(x) = rµn

(1 + x) + (−1)nrµn
(1− x), g(x) =

q(x)f(x). By (5.5), (5.6) and (5.2),

M0 = sup
x∈(− 1

3
, 1
3
)

|f(x)| ≤ r(2µn

3
) + r(4µn

3
) ≤ 45

√
2

32πµ2
n

,

M1 = sup
x∈(− 1

3
, 1
3
)

|f ′(x)| ≤ −µnr
′(2µn

3
) − µnr

′(4µn

3
) ≤ 243

√
2

64πµ2
n

,

M2 = sup
x∈(− 1

3
, 1
3
)

|f ′′(x)| ≤ µ2
nr

′′(2µn

3
) + µ2

nr
′′(4µn

3
) ≤ 4131

√
2

256πµ2
n

,

I =

∫ ∞

0

|f(x)|dx ≤
∫ ∞

0

rµn
(1 + x)dx+

∫ 1

0

rµn
(1 − x)dx

=
1

µn

∫ ∞

0

r(y)dy =

(

cos
π

8
−

√
2

2

)

1

µn

;

notation here corresponds to that of Appendix C. By (C.2) and (C.3),

|ADg(z)| <
0.605

µ2
n

+
0.156

µn
, z ∈ (−1,−1

3
);(8.4)

|ADg(z)| <
4.444

µ2
n

+
0.622

µn
, z ∈ (−1

3
, 0).(8.5)

Furthermore, |g(z)| = 0 for z ∈ (−1,−1
3
) and

|µng(z)| ≤ µn

2
M0 <

0.317

µn

, z ∈ (−1
3
, 0).(8.6)

Finally, for z < 0 we have

|(−∆)
1
2h(z)| =

1

π

∣

∣

∣

∣

∫ ∞

1

sin(µn(1 + x) + π
8
)

(x− z)2
dx

∣

∣

∣

∣

≤ 1

π(1 − z)2

∫ 1+ π
µn

1

∣

∣sin(µn(1 + x) + π
8
)
∣

∣ dx =
1

πµn(1 − z)2
,

so that

|(−∆)
1
2h(z)| < 0.180

µn

, z ∈ (−1,−1
3
);(8.7)

|(−∆)
1
2h(z)| < 0.319

µn
, z ∈ (−1

3
, 0).(8.8)

Since for z ∈ (−1, 0) we have

|ADϕ̃n(z) + µnϕ̃n(z)| ≤ |(−∆)
1
2h(z)| + |(−∆)

1
2 g(z)| + |µng(z)|,

estimates (8.4)–(8.8) yield that

|ADϕ̃n(z) + µnϕ̃n(z)| < 0.605

µ2
n

+
0.336

µn
, z ∈ (−1,−1

3
);(8.9)

|ADϕ̃n(z) + µnϕ̃n(z)| < 4.444

µ2
n

+
1.258

µn
, z ∈ (−1

3
, 0).(8.10)
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By symmetry, estimates similar to (8.9) and (8.10) hold for z ∈ (0, 1). The estimate (8.3)
follows. �

The estimate of the L2(D) norm of ϕ̃n plays an important role in the sequel. We have
√

1 − 0.52

µn

≤ ‖ϕ̃n‖2 ≤
√

1 +
1.37

µn

.(8.11)

Indeed, the lower bound follows by (5.2), (8.1), (8.2) and symmetry,

‖ϕ̃n‖2
2 ≥

∫ 1

−1

(

sin(µn(x+ 1) + π
8
)
)2
dx

− 4

∫ 1

−1

∣

∣q(−x)rµn
(x+ 1) sin(µn(x+ 1) + π

8
)
∣

∣ dx

≥
(

1 +

√
2

4µn

)

− 4

µn

(

cos
π

8
−

√
2

2

)

.

In a similar manner, using also (5.3),

‖ϕ̃n‖2
2 ≤

(

1 +

√
2

4µn

)

+
4

µn

(

cos
π

8
−

√
2

2

)

+ 4

∫ 1

−1

(r(µn(x+ 1)))2dx

≤
(

1 +

√
2

4µn

)

+
4

µn

(

cos
π

8
−

√
2

2

)

+
4(Γ(3

4
))2

π(Γ(1
4
))2µn

.

9. Simplicity of eigenvalues for the interval

We continue denoting by ϕj the eigenfunctions of (PD
t ), by λj (λj > 0) the corresponding

eigenvalues, and by ϕ̃n and µn the approximations of the previous section. Fix n ≥ 1.
Since ϕ̃n ∈ L2(D), we have ϕ̃n =

∑

j ajϕj for some aj . Moreover, ‖ϕ̃n‖2
2 =

∑

j a
2
j and

ADϕ̃n = −
∑

j λjajϕj . Let λk(n) be the eigenvalue nearest to µn. Then

‖ADϕ̃n + µnϕ̃n‖2
2 =

∞
∑

j=1

(λj − µn)2a2
j

≥ (λk(n) − µn)2

∞
∑

j=1

a2
j ≥ (λk(n) − µn)

2 ‖ϕ̃n‖2
2 .

By (8.3) and (8.11), it follows that

∣

∣λk(n) − µn

∣

∣ ≤

√

√

√

√

1.21 + 8.00
µn

+ 13.66
µ2

n

1 − 0.52
µn

· 1

µn
.(9.1)

The right-hand side is a decreasing function of n, so that
∣

∣λk(n) − µn

∣

∣ < 0.098π < π
10

whenever
n ≥ 4. Hence we have the following result.

Lemma 2. Each interval (nπ
2
− π

4
, nπ

2
), n ≥ 4, contains an eigenvalue λk(n).
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In particular λk(n) are distinct for n ≥ 4. We will now prove that there are only three
eigenvalues not included in the above lemma. For t > 0, we have (see e.g. [3, 30])

∞
∑

j=1

e−λjt =

∫

D

∞
∑

j=1

e−λjt(ϕj(x))
2dx =

∫

D

pD
t (x, x)dx ≤

∫

D

pt(0)dx =
2

πt
.

On the other hand,
∞
∑

n=4

e−λk(n)t ≥
∞
∑

n=4

e−
nπ
2

t =
e−2πt

1 − e−
π
2
t
≥ 2

πt
− 7

2

for small t > 0. It follows that there are at most 3 eigenvalues of (PD
t ) other than λk(n)

(n ≥ 4). Furthermore, we have 1 < λ1 < 3π
8

, 2 ≤ λ2 ≤ π and 3.4 ≤ λ3 ≤ 3π
2

by [1].
Therefore, k(n) = n for n ≥ 4, and also by (9.1), λ3 > 3.83. We have thus proved the
following theorem.

Theorem 6. We have

1 < λ1 <
3π

8
, 2 ≤ λ2 ≤ π, 3.83 < λ3 ≤

3π

2
,

and
nπ

2
− π

8
− π

10
< λn <

nπ

2
− π

8
+

π

10
(n ≥ 4).

In particular, all eigenvalues of (PD
t ) are simple, |λn − λm| > 0.69 when n 6= m, and

|λn − λm| > 3π
10

if moreover n ≥ 4. Furthermore, as n→ ∞,

λn =
nπ

2
− π

8
+O

(

1

n

)

.(9.2)

More precisely,
∣

∣

∣
λn −

(nπ

2
− π

8

)∣

∣

∣
≤ 1

n
n ≥ 1,(9.3)

i.e. the constant in O( 1
n
) notation in (9.2) is not greater than 1. Indeed, by (9.1), for-

mula (9.3) holds for n ≥ 7, and for n ≤ 6 one can use the estimates (11.1). Without
referring to numerical calculation of upper and lower bounds, one can use (9.1) for n ≥ 4
and estimates of λ1, λ2 and λ4 of Theorem 6 to obtain (9.3) with 1

n
replaced by 3

2n
.

Better numerical bounds for first few eigenvalues are obtained in Section 11.

10. Estimates of eigenfunctions for the interval

In the preceding two sections the approximations ϕ̃n to the eigenfunctions ϕn were con-
structed and it was proved that µn = nπ

2
− π

8
is close to λn. Now we show that ϕ̃n is close to

ϕn in L2(D).
Let n ≥ 4 be fixed. Recall that ϕ̃n =

∑

j ajϕj; with no loss of generality we may assume

that an > 0. For j 6= n we have |µn − λj | ≥ 3π
10

. Therefore,

‖ADϕ̃n + µnϕ̃n‖2
2 =

∞
∑

j=1

(µn − λj)
2a2

j ≥ (µn − λn)2a2
n +

9π2

100

∑

j 6=n

a2
j .
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Denote the left-hand side by M2
n ; the upper bound for Mn is given in (8.3). We have

‖ϕ̃n − anϕn‖2
2 =

∑

j 6=n

a2
j ≤ 100M2

n

9π2
.

Therefore,

∥

∥ϕ̃n − ‖ϕ̃n‖2 ϕn

∥

∥

2
≤ ‖ϕ̃n − anϕn‖ + (‖ϕ̃n‖2 − an) ≤ 2 ‖ϕ̃n − anϕn‖ ≤ 20Mn

3π
.

This, together with (8.11), yields the following result.

Lemma 3. Let n ≥ 4. With the notation of the previous two sections, we have 1 − 0.52
µn

<

‖ϕ̃n‖2 < 1 + 1.37
µn

, and

∥

∥ϕ̃n − ‖ϕ̃n‖2 ϕn

∥

∥

2
≤ 20

3π

√

1.21 +
8.00

µn
+

13.66

µ2
n

· 1

µn
.

In particular, for n ≥ 4, by the above result and (8.11),

∥

∥

∥

∥

ϕ̃n

‖ϕ̃n‖2

− ϕn

∥

∥

∥

∥

2

<
20

3π
· Mn
√

1 − 0.52
µn

<
20

3π
· π
10

=
2

3
.

Since ϕ̃n is symmetric or antisymmetric when n is odd or even respectively, we have the
alternating type of symmetry of ϕn.

Corollary 3. The function ϕn is symmetric when n is odd, and antisymmetric when n is
even.

Proof. For n ≤ 3 this is a result of [1]. When n ≥ 4, ϕn is either symmetric or antisymmetric,
and the distance between ϕn and normed ϕ̃n does not exceed 2

3
. Therefore ϕn has the same

type of symmetry as ϕ̃n. �

Corollary 4. As n→ ∞,

∥

∥ϕn − sin
(

(nπ
2
− π

8
)(1 + x) + π

8

)∥

∥

2
= O

(

1√
n

)

.

By a rather standard argument, ‖ϕn‖∞ ≤
√

eλn

π
, see e.g. [31]. A slight modification gives

the following result.

Proposition 2. Let c = ‖ϕ̃n‖2. Then

‖ϕn‖∞ ≤ 1

c

(
√

eλn

π
· ‖cϕn − ϕ̃n‖ +

√
e ‖ψµn

‖∞

)

.(10.1)
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Proof. Let t = 1
2λn

. Using Cauchy-Schwarz inequality, Plancherel theorem and the inequality

pD
t (x, y) ≤ pt(x− y), we obtain

c |ϕn(x)| ≤ eλnt
∣

∣PD
t (cϕn − ϕ̃n)(x)

∣

∣ + eλnt
∣

∣PD
t ϕ̃n(x)

∣

∣

≤
√
e ·
√

∫ ∞

−∞
(pt(x− y))2dy · ‖cϕn − ϕ̃n‖2 +

√
e ‖ϕ̃n‖∞

=

√

e

2π

∫ ∞

−∞
e−2t|z|dz · ‖cϕn − ϕ̃n‖ +

√
e ‖ψµn

‖∞

=

√

e

2πt
· ‖cϕn − ϕ̃n‖ +

√
e ‖ψµn

‖∞ ,

and the proposition follows. �

Corollary 5. The functions ϕn(x) are uniformly bounded in n ≥ 1 and x ∈ D.

More precisely, for n ≥ 1 we have

‖ϕn‖∞ ≤ 3.(10.2)

Indeed, for n ≥ 7 this follows from (10.1) when the right-hand side is estimated using

Theorem 6, Lemma 3 and (5.10). For n ≤ 6 it is a consequence of ‖ϕn‖∞ ≤
√

eλn

π
and

λn ≤ nπ
2

.

11. Numerical estimates

In this section we give numerical estimates for the eigenvalues λn of the semigroup (PD
t ) when

D = (−1, 1). The following estimates hold true; the upper bounds are given in superscript
and the lower bounds in subscript:

λ1 = 1.15777388369792
58 λ6 = 9.03285269050838

48857

λ2 = 2.75475474221695
510 λ7 = 10.60229309963854

1113

λ3 = 4.31680106659758
303 λ8 = 12.17411826276180

2585

λ4 = 5.89214747094751
3908 λ9 = 13.74410905944402

39799

λ5 = 7.46017573941122
39764 λ10 = 15.31555499608382

2690

(11.1)

This is the result of numerical computation of the eigenvalues of 900 × 900 matrices using
Mathematica 6.01. Different methods are used for the upper and lower bounds, as is described
below. For the introduction to the notions of the Green operator and the Green function,
the reader is referred to e.g. [4]. The explicit formula for the Green function of the interval
was first obtained by M. Riesz [39].

11.1. Upper bounds. For the upper bounds, we use the Rayleigh-Ritz method, see e.g. [44].
Let GD be the Green operator for PD

t . Then GDϕn = 1
λn
ϕn. The following min-max

variational characterization of eigenvalues of GD is well known, see e.g. [37]:

1

λn

= max

{

min
f∈E

R(f) : E is n-dimensional subspace of L2(D)

}

,(11.2)
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where R(f) is the Rayleigh quotient for GD,

R(f) =

∫ 1

−1
f(x)GDf(x)dx

‖f‖2
2

.

Let fn, n = 1, 2, ..., be a complete orthonormal system in L2(D), and let EN be the subspace
spanned by fn, n = 1, 2, ..., N . By replacing L2(D) by EN in (11.2), we clearly obtain the
upper bound λ+

n,N for λn, n = 1, 2, ..., N . On the other hand, (λ+
n,N)−1 is the n-th largest

eigenvalue of the N × N matrix AN of coefficients am,n of the operator GD in the basis
(f1, f2, ..., fN) (note that am,n do not depend on N).

The main difficulty is to find a convenient basis fn for which the approximations converge
sufficiently fast, while the entries of AN can be computed explicitly.

For the sake of comparison, recall that analytical computation in [1] gives the upper bound
3π
8
≈ 1.178. Our first attempt to use the Rayleigh-Ritz method for AD instead of GD, with

fn(x) = sin(nπ
2

(x+1)), resulted in relatively poor estimates. For example, for N = 1000 the
upper bound for the first eigenvalue is λ1,1000 ≈ 1.1579, accurate up to third decimal place.
A more efficient approach, described below, uses Legendre polynomials.

We begin with computation the values of the Green operator of the interval (−1, 1) on the
polynomials gn(x) = xn. Recall that the Green function of the interval D = (−1, 1) for the
Cauchy process is given by

GD(x, y) =
1

2π

∫
(1−x2)(1−y2)

(x−y)2

0

du√
u
√
u+ 1

=
1

π
log

1 − xy +
√

1 − x2
√

1 − y2

|x− y| ,

where x, y ∈ D. Integrating by parts gives, after some simplification,

GDgn(y) =

∫ 1

−1

GD(x, y)gn(x)dx

=
1

π

√

1 − y2

n+ 1
pv

∫ 1

−1

xn+1 dx√
1 − x2(x− y)

=
1

π

√

1 − y2

n+ 1

∫ 1

−1

(xn+1 − yn+1) dx√
1 − x2(x− y)

+
1

π

√

1 − y2yn+1

n+ 1
I(y),

where

I(y) = pv

∫ 1

−1

dx√
1 − x2(x− y)

.

The indefinite integral is given by

1
√

1 − y2
log

|x− y|
√

1 − y2

2(1 − xy +
√

1 − x2
√

1 − y2)
,
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and therefore I(y) = 0. Consequently, we have

GDgn(y) =
1

π

√

1 − y2

n+ 1

∫ 1

−1

(xn+1 − yn+1) dx√
1 − x2(x− y)

=
1

π

√

1 − y2

n+ 1

n
∑

i=0

yn−i

∫ 1

−1

xidx√
1 − x2

=
1√
π

√

1 − y2

n+ 1

⌊n
2 ⌋
∑

j=0

yn−2j Γ(j + 1
2
)

Γ(j + 1)
.

Finally, for m,n = 0, 1, 2, ... such that m+ n is even we get

Gm,n =

∫ 1

−1

gm(y)GDgn(y)dy

=
1

n+ 1

⌊n
2 ⌋
∑

j=0

Γ(j + 1
2
)√

π Γ(j + 1)

∫ 1

−1

√

1 − y2 yn+m−2jdy

=
1

2(n+ 1)

⌊n
2 ⌋
∑

j=0

Γ(j + 1
2
)

Γ(j + 1)

Γ(n+m+1
2

− j)

Γ(n+m
2

+ 2 − j)
.

By simple induction, one can prove that in this case

Gm,n =



















1

m+ n + 2
· Γ(m+1

2
)

Γ(m
2

+ 1)
· Γ(n+1

2
)

Γ(n
2

+ 1)
for m, n even,

1

m+ n + 2
· Γ(m

2
+ 1)

Γ(m+3
2

)
· Γ(n

2
+ 1)

Γ(n+3
2

)
for m, n odd.

(11.3)

If m+ n is odd, we obviously have Gm,n = 0.
The Legendre polynomials are defined by

fn(x) =

⌊n
2 ⌋
∑

i=0

cn,ix
n−2i,

where

cn,i =
(−1)i(2n− 2i)!

2ni!(n− i)!(n− 2i)!
=

(−1)iΓ(2n− 2i+ 1)

2ni!Γ(n− i+ 1)Γ(n− 2i+ 1)
,(11.4)

form the orthogonal basis in L2(D). Therefore, we have

am,n =

∫ 1

−1

fm(y)GDfn(y)dy =

⌊m
2 ⌋
∑

i=0

⌊n
2 ⌋
∑

j=0

cn,icm,jGi,j,(11.5)

with cn,i and Gi,j given by (11.3) and (11.4). The upper bound for λn is λ+
n,N , where (λ+

n,N)−1

is the n-th greatest eigenvalue of the N ×N matrix AN = (an,m).
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11.2. Lower bounds. To find the lower bounds to the eigenvalues of the problem (1.1)-
(1.3) for an interval D = (−1, 1) we apply the Weinstein-Aronszajn method of intermediate
problems. More precisely, we use (with small changes in the notation) the method described
in [23] (section The method), where the sloshing problem is considered. For more details,
see [23] and the references therein.

The analytic function sin(z) = (sin ξ cosh η, sinh ξ cos η), where z = ξ + iη, transforms
the semi-infinite strip R = {(ξ, η) ∈ R2 : −π

2
≤ ξ ≤ π

2
, η ≥ 0} onto the upper half-space

H = {(x, y) ∈ R2 : y ≥ 0}. Let u be a solution to the eigenproblem (1.1)-(1.3) with
D = (−1, 1). Then the image v(z) = u(η(z)) of the function u under η is a solution to the
following equivalent problem

∆v(ξ, η) = 0 − π
2
< ξ < π

2
, η > 0,(11.6)

∂
∂η
v(ξ, 0) = −λ cos ξ v(ξ, 0) π

2
≤ ξ ≤ π

2
, η = 0,(11.7)

v(−π
2
, η) = v(π

2
, η) = 0 η ≥ 0.(11.8)

For f ∈ L2(−π
2
, π

2
) we denote by Af (not to be confused with Af) the normal derivative

of the harmonic function agreeing with f on (−π
2
, π

2
) and vanishing on {−π

2
, π

2
} × [0,∞)

(this is an analogue of the Dirichlet-Neumann operator). Since v(ξ, η) = sin(k(ξ + π
2
))e−kη

satisfies (11.6) and (11.8), the eigenfunctions of A are simply gk(ξ) =
√

2
π

sin(k(ξ+ π
2
)), and

Agk = kgk.
We define the operator of multiplication by the function sign ξ

√
1 − cos ξ

(Tf)(ξ) = sign ξ
√

1 − cos ξ f(ξ), f ∈ L2(−π
2
, π

2
).

The problem (11.6)–(11.8) can be written in the operator form as

(Af)(ξ) = λ(1 − T 2)f(ξ).(11.9)

Let PN be the orthogonal projection of L2(D) onto a linear subspace EN of L2(D) spanned
by the first N of the linearly dense set of functions f1, f2, .... Then the eigenvalues λ−n,N of
the spectral problem

Af = λ(1 − TPNT )f(11.10)

are lower bounds for the eigenvalues of (11.9) and consequently to the eigenvalues λn of the
problem (11.6)–(11.8). Roughly, this is because

∫ π
2

−π
2

f(x)TPNTf(x)dx = ‖PNTf(x)‖2
2 ≤ ‖Tf(x)‖2

2 =

∫ π
2

−π
2

f(x)T 2f(x)dx,

and so the Rayleigh quotient associated with (11.10) is dominated by the Rayleigh quotient
for (11.9), namely

∫
π
2

−π
2
f(x)Af(x)dx

∫
π
2

−π
2
f(x)(1 − TPNT )f(x)dx

≤
∫

π
2

−π
2
f(x)Af(x)dx

∫
π
2

−π
2
f(x)(1 − T 2)f(x)dx

.

The problem (11.10) is called the intermediate problem. We will later choose fn so that each
Tfn is a linear combination of gi, the eigenfunctions of A, say

Tfn =

K
∑

i=1

cn,igi, n = 1, 2, ..., N,(11.11)
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where K ≥ N . Let C be the N ×K matrix with entries cn,i, and let B be the N ×N Gram
matrix of the functions f1, ..., fN , i.e. the matrix with entries

bm,n =

∫ π
2

−π
2

fm(x)fn(x)dx.

Finally, let D be the K ×K diagonal matrix of the first K eigenvalues 1, 2, ..., K of A. Note
that for each j > K, the function gj is the solution of (11.10) with eigenvalue λ = j (this
is because Tgj = 0). On the other hand, if f is the linear combination of g1, g2, ..., gK with
coefficients α = (α1, ..., αK), then f satisfies (11.10) if and only if α is the solution to the
K ×K relative matrix eigenvalue problem,

Dα = λ(I − CTB−1C)α.(11.12)

By arranging the eigenvalues of (11.12) and eigenvalues K+1, K+2, ... in the nondecreasing
order, we obtain the sequence of eigenvalues λ−n,N of the intermediate problem (11.10). As
it was already noted, these are lower bounds for λn.

We define

fn(x) = 2
√

1 + cos x gn(x).

It follows that

Tfn(x) = 2 sin x gn(x) = (−1)ngn−1(x) + (−1)n+1gn+1(x),

using the convention that g0(x) = 0. Consequently, C is N × (N + 1) matrix of the form

C =





















0 1 0 0 · · · 0 0 0
1 0 −1 0 · · · 0 0 0
0 −1 0 1 · · · 0 0 0
0 0 1 0 · · · 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 · · · 0 (−1)N 0
0 0 0 0 · · · (−1)N 0 (−1)N+1





















.

The coefficients of the Gram matrix B can be easily computed, and we have

bm,n =
(−1)1+ m+n

2 32mn

π((m− n)2 − 1)((m+ n)2 − 1)
+ 4δm,n

whenever m + n is even, and bm,n = 0 otherwise. Finally, the solutions of the spectral
problem (11.12) are simply the inverses of the eigenvalues of the matrix D−1(I −CTB−1C).
These numbers turn out to be less than N + 2, therefore they form λ−n,N , n = 1, 2, ..., N + 1.

Appendix A. Estimates of pt − pD
t

Let D = (0,∞). Let pt(x,A) = Px(Xt ∈ A) for A ⊆ R, and fix x > 0. By the strong
Markov property,

2Px(Xt ≤ 0) = 2Px(Xt ∈ Dc) = Ex(2pt−τD
(X(τD), Dc) ; τD ≤ t).
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Since 2ps(y,D
c) ≥ 1 for y ≤ 0, s > 0, the right-hand side is bounded below by Px(τD ≤ t).

Therefore, for t > 0 and x > 0,

Px(τD ≤ t) ≤ 2

π

∫ 0

−∞

t

t2 + (y − x)2
dy = 1 − 2

π
arctan

x

t
≤ min

(

1,
t

x

)

.(A.1)

For t > 0, x, y ∈ D = (0,∞), we have (see formula (2.9) in [1])

pt(y − x) − pD
t (x, y)

t
=

1

t
Ex (pt−τD

(y −X(τD)) ; τD ≤ t)

=
1

πt
Ex

(

t− τD
(t− τD)2 + (y −X(τD))2

; τD ≤ t

)

≤ 1

πy2
Px (τD ≤ t) ≤ min

(

1

πy2
,

t

πxy2

)

.

By symmetry, also

pt(y − x) − pD
t (x, y)

t
≤ min

(

1

πx2
,

t

πx2y

)

.

Since pt(y − x) ≤ 1
πt

, we conclude that

0 ≤ pt(y − x) − pD
t (x, y)

t
≤ 1

π
min

(

1

t2
,

1

x2
,

1

y2
,
t

x2y
,
t

xy2

)

, t, x, y > 0.(A.2)

This estimate is used in Sections 2 and 3.

Appendix B. Properties of η and B

In Section 3, a function η being the generalized Hilbert transform of − arctan t− is sought.
More precisely, η is the function satisfying η(0) = 0 and

η′(t) =
1

π
pv

∫ 0

−∞

1

(t− s)(1 + s2)
ds, t ∈ R,(B.1)

the integral being the Cauchy principal value when t < 0. Observe that
∫

1

(t− s)(1 + s2)
ds =

1

1 + t2

∫
(

s+ t

1 + s2
+

1

t− s

)

ds

=
1

1 + t2

(

t arctan s+
1

2
log(1 + s2) − log |t− s|

)

.

Hence we have

η′(t) =
1

(1 + t2)

(

t

2
− 1

π
log |t|

)

and so

η(t) =
log(1 + t2)

4
− 1

π

∫ t

0

log |s|
1 + s2

ds, t ∈ R.(B.2)

In particular,

η(−t) = −η(t) + log
√

1 + t2, t ∈ R.(B.3)
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The integrals of log |s|
1+s2 over (0,∞) and over (−∞, 0) are zero (this follows by a substitution

u = 1
s
), and the maximum and minimum, equal to the Catalan constant C ≈ 0.916 and to

−C respectively, is attained at −1 and 1. It follows that

1

4
log(1 + t2) − C

π
≤ η(t) ≤ 1

4
log(1 + t2) +

C
π
, t ∈ R,(B.4)

and in particular,

eη(t) ∼
√

|t| as |t| → ∞.(B.5)

On the other hand, by (B.1),

η′(t) =
1

π

d

dt

∫ 0

−∞

log |t− s|
1 + s2

ds,

and for t = 0,
∫ 0

−∞

log |s|
1 + s2

ds =

(
∫ 1

0

+

∫ ∞

1

)

log s

1 + s2
ds =

∫ 1

0

log s

1 + s2
ds+

∫ 1

0

− log s

1 + s−2

ds

s2
= 0.

Therefore,

η(t) =
1

π

∫ 0

−∞

log |t− s|
1 + s2

ds, t ∈ R.(B.6)

A related holomorphic function B plays a major role in Sections 3–7. It is defined by

B(z) =
1

π

∫ 0

−∞

log(z − s)

1 + s2
ds, z ∈ C.(B.7)

Here we agree that log(z) = log |z| + iπ
2

for z ∈ (−∞, 0], i.e. log (and therefore also B) is
continuous on (−∞, 0] when approached from C+, but not from C−; see also Section 4. The
function ReB(z) is harmonic in C \ (−∞, 0], continuous in whole C and ReB(t) = η(t) for
t ∈ R. For z ∈ C, we have

ReB(z) =
1

π

∫ 0

−∞

log |z − s|
1 + s2

ds ≤ 1

π

∫ 0

−∞

log(|z| − s)

1 + s2
ds = η(|z|),

and in a similar manner

ReB(z) =
1

π

∫ 0

−∞

log |z − s|
1 + s2

ds ≥ 1

π

∫ 0

−∞

log
∣

∣−|z| − s
∣

∣

1 + s2
ds = η(−|z|).

By (B.4),

1

4
log(1 + |z|2) − C

π
≤ ReB(z) ≤ 1

4
log(1 + |z|2) +

C
π
, z ∈ C.(B.8)

In particular,

|eB(z)| ∼
√

|z| as |z| → ∞.(B.9)

This estimates are used in Section 3 and in Section 7 in contour integration. We also have
ImB(t) = arctan t−; this can be shown directly, or using the first part of this section as
follows. The function ReB′(t) = η′(t) is the Hilbert transform of (− arctan t−)′, and at the
same time ReB′(t) is the Hilbert transform of − ImB′(t), hence ImB′(t) = (arctan t−)′.
Since ImB(0) = 0 = arctan 0−, we conclude that ImB(t) = arctan t−.
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The following auxiliary computations related to the functions η and B are used in Sec-
tions 3 and 5. We have

∫ π
2
− arctan s

1 + s2
ds =

π

2
arctan s− 1

2
(arctan s)2,

so that

1

π

∫ ∞

0

π
2
− arctan s

1 + s2
ds =

π

8
.(B.10)

By a substitution s = 1
tan t

,
∫ ∞

0

log(1 + s2)

1 + s2
ds = −2

∫ π
2

0

log sin tdt.

We have

2

∫ π
2

0

log sin tdt =

∫ π
2

0

log sin tdt+

∫ π
2

0

log cos tdt =

∫ π
2

0

log sin(2t)dt− π log 2

2

=
1

2

∫ π

0

log sin udu− π log 2

2
=

∫ π
2

0

log sin udu− π log 2

2
.

Therefore,

1

π

∫ ∞

0

log(1 + s2)

1 + s2
ds = log 2.(B.11)

Whenever a > −1 and b > 1+a
2

, we have by a substitution 1 + t2 = 1
s

and a formula for the
beta integral,

∫ ∞

0

ta

(1 + t2)b
dt =

1

2

∫ 1

0

(1 − s)
a−1
2 sb− a+3

2 ds =
Γ(a+1

2
)Γ(b− a+1

2
)

2Γ(b)
.(B.12)

Also, by integration by parts and Γ(1
2
) =

√
π,

∫ ∞

0

1 − e−tx

t3/2
dt = 2x

∫ ∞

0

e−tx

√
t
dt = 2

√
πx, x > 0.(B.13)

Appendix C. Estimates for the generator on a piecewise smooth function

The following estimates are used in Section 8. Define an auxiliary piecewise C2 function:

q(x) =



















0 for x ∈ (−∞,−1
3
),

9
2
(x+ 1

3
)2 for x ∈ (−1

3
, 0),

1 − 9
2
(x− 1

3
)2 for x ∈ (0, 1

3
),

1 for x ∈ (1
3
,∞).

(C.1)

Note that q(x)+ q(−x) = 1. Let f be a piecewise C2 function on R and let g(x) = q(x)f(x).
Suppose that g has a compact support. We estimate Ag(x) for x ∈ (−1, 0).

Choose M0, M1 and M2 so that |f(x)| ≤M0, |f ′(x)| ≤M1, |f ′′(x)| ≤M2 for x ∈ (−1
3
, 1

3
).

Let I =
∫∞
0

|f(x)|dx. Then

|g′′(x)| ≤M0 |q′′(x)| + 2M1 |q′(x)| +M2 |q(x)| ≤ 9M0 + 6M1 +M2.
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If z ∈ (−1,−1
3
), then g(z) = 0, and so Ag(z) is estimated (up to the factor 1

π
) by

∫ ∞

− 1
3

|g(x)|
(x− z)2

dx ≤ M0

∫ 1
3

− 1
3

q(x)

(x− z)2
dx+

9

4

∫ ∞

1
3

|f(x)| dx ≤ 3M0 +
9I

4
;

here we used q(x)
(x−z)2

≤ 9
2

for x ∈ (−1
3
, 1

3
) in the second inequality. For z ∈ (−1

3
, 0) the

principal value integral in the definition of A can be estimated by splitting it into two parts.
By Taylor’s expansion of g, we have

∣

∣

∣

∣

∣

pv

∫ z+ 1
3

z− 1
3

g(x) − g(z)

(x− z)2
dx

∣

∣

∣

∣

∣

≤ 2
3
· 1

2
sup

{

|g′′(x)| : x ∈ (z − 1
3
, z + 1

3
)
}

≤ 1
3
sup

{

|g′′(x)| : x ∈ (−1
3
, 1

3
)
}

≤ 3M0 + 2M1 + 2M2

3
;

for the second inequality note that g′′(x) = 0 for x < −1
3
. Furthermore,

∣

∣

∣

∣

∣

(

∫ z− 1
3

−∞
+

∫ ∞

z+ 1
3

)

g(x) − g(z)

(x− z)2
dx

∣

∣

∣

∣

∣

≤ |g(z)|
(

∫ z− 1
3

−∞
+

∫ ∞

z+ 1
3

)

1

(x− z)2
dx+ 9

∫ ∞

z+ 1
3

|f(x)|dx ≤ 6M0 + 9I.

We conclude that

|Ag(z)| ≤ 3M0 + 9
4
I

π
, z ∈ (−1,−1

3
);(C.2)

|Ag(z)| ≤ 9M0 + 2M1 + 2
3
M2 + 9I

π
, z ∈ (−1

3
, 0).(C.3)
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