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Abstract. We investigate the classical eigenvalue problem that arises in hy-
drodynamics and is referred to as the sloshing problem. It describes free liquid
oscillations in a liquid container W ⊂ R3. We study the case when W is an axially
symmetric, convex, bounded domain satisfying the John condition. The Cartesian
coordinates (x, y, z) are chosen so that the mean free surface of the liquid lies in
(x, z)-plane and y-axis is directed upwards (y-axis is the axis of symmetry). Our
first result states that the fundamental eigenvalue has multiplicity 2 and for each
fundamental eigenfunction ϕ there is a change of x, z coordinates by a rotation
around y-axis so that ϕ is odd in x-variable.

The second result of the paper gives the following monotonicity property of the
fundamental eigenfunction ϕ. If ϕ is odd in x-variable then it is strictly monotonic
in x-variable. This property has the following hydrodynamical meaning. If liquid
oscillates freely with fundamental frequency according to ϕ then the free surface
elevation of liquid is increasing along each line parallel to x-axis during one period
of time and decreasing during the other half period. The proof of the second result
is based on the method developed by D. Jerison and N. Nadirashvili for the hot
spots problem for Neumann Laplacian.

1. Introduction

Linear water-wave theory is a widely-used approach that allows to determine the
frequencies and modes of free oscillations of a liquid in a container. Such oscillations
exist provided the liquid’s upper surface is free and, in the framework of this theory,
one obtains their frequencies and modes from a mixed Steklov problem. The latter
involves a spectral parameter in the boundary condition on the free surface. This
boundary value problem (usually referred to as the sloshing problem) has been the
subject of a great number of studies over 250 years (see [10] for a historical review and
[3], [13], [16], [22], [23], [24] for some of recent literature). It is also worth pointing
out here that other Steklov type eigenvalue problems have attracted considerable
attention in last years. For some of these developments, see e.g. [15], [11], [2], [9].

Recently, the question of the so-called ‘high spots’ defined by sloshing eigenfunc-
tions corresponding to the fundamental eigenvalue attracted the authors’ attention.
This question is not only similar, but closely related to the long-standing ‘hot spots’
conjecture of J. Rauch. (It is worth mentioning that a substantial progress has been
achieved in studies of this conjecture for the Neumann Laplacian during the past
decade; see, for example, the works [34], [1], [20], [7], [6].) Roughly speaking, the
question about high spots concerns monotonicity properties of fundamental slosh-
ing eigenfunctions (see subsection 1.3 for a detailed description). Several results
about the location of high spots were proved in [26] and [27]. One of them deals
with the fundamental eigenfunction (it is unique up to a non-zero factor) of the

T. Kulczycki and M. Kwaśnicki were supported in part by MNiSW grant # N N201 373136.
1



2 T. KULCZYCKI AND M. KWAŚNICKI

two-dimensional sloshing problem in the case when the domain’s top interval is the
one-to-one orthogonal projection of the bottom. The other one treat fundamental
eigenfunctions in troughs (their cross-sections are subject to the same condition),
and some vertical axisymmetric containers. Moreover, it was shown in [26] that for
vertical-walled containers with horizontal bottom the question about high spots is
equivalent to the hot spots conjecture.

The aim of this paper is to study the location of high spots for fundamental
eigenfunctions satisfying the three-dimensional sloshing problem in axially symmet-
ric domains of rather general shape. It occurs that the method, which can be briefly
characterised as the method of domain’s deformation (it was developed by D. Jerison
and N. Nadirashvili in [20] in order to prove the hot spots conjecture for domains
with two axes of symmetry) is adaptable for our purpose. The result demonstrating
that eigenvalues and eigenfunctions of the sloshing problem depend continuously on
the domain deformation are of interest in itself.

1.1. Sloshing problem. First we formulate the three-dimensional sloshing problem
in its general form.

Let an inviscid, incompressible, heavy liquid occupy a three-dimensional con-
tainer bounded from above by a free surface, which in its mean position is a simply
connected two-dimensional domain of finite diameter. Let Cartesian coordinates
(x, y, z) be chosen so that the mean free surface lies in the (x, z)-plane and the y-
axis is directed upwards. The surface tension is neglected on the free surface, and
we assume the liquid motion to be irrotational and of small amplitude. The latter
assumption allows us to linearise boundary conditions on the free surface and this
leads to the following boundary value problem for ϕ(x, y, z) — the velocity potential
of the flow with a time-harmonic factor removed:

∆ϕ = 0 in W, (1.1)

∂ϕ

∂y
= νϕ on F, (1.2)

∂ϕ

∂n
= 0 on B. (1.3)

Here W ⊂ {(x, y, z) ∈ R3 : y < 0} is the domain which is supposed to be a
bounded Lipschitz domain. The boundary ∂W consists of a two-dimensional domain
F ⊂ {(x, 0, z) : x, z ∈ R} referred to as the free surface (we assume that F is a
bounded Lipschitz domain) and B = ∂W \ F , the rigid container’s bottom. In the
whole paper we will refer to a domain W with the above geometric properties as to
a liquid domain. Throughout the article, ∂

∂n
denotes the normal derivative at ∂W ,

which is well-defined for almost every (with respect to the surface measure) point
of ∂W . We understand that ϕ is a continuous function on W , and that (1.3) is
satisfied for all points on B for which ∂

∂n
is defined. We remark that in condition

(1.2), the coefficient ν = ω2/g is the spectral parameter which involves the radian
frequency ω of liquid’s oscillations and the acceleration due to gravity g.

The zero eigenvalue obviously exists for the problem (1.1)–(1.3), but we exclude
it with the help of the following orthogonality condition:∫

F

ϕ = 0. (1.4)
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Figure 1. (a) An axisymmetric container W obtained as rotation of
a domain D. (b) A domain D.

It has been known since the 1950s that the problem (1.1)–(1.4) has a discrete spec-
trum; that is, there exists a sequence of eigenvalues

0 < ν1 ≤ ν2 ≤ · · · ≤ νn ≤ . . . , (1.5)

each having a finite multiplicity equal to the number of repetitions in (1.5), and such
that νn →∞ as n→∞. These eigenvalues can be found by means of the variational
principle (see, for example, [30]), corresponding to the following Rayleigh quotient:∫

W

[
(∂ϕ
∂x

)2 + (∂ϕ
∂y

)2 + (∂ϕ
∂z

)2
]∫

F
ϕ2

, (1.6)

where ϕ is in the Sobolev space H1(W ) and satisfies (1.4). Thus ν1 is equal to
the minimum of this quotient over the subspace of the Sobolev space H1(W ) which
consists of functions satisfying (1.4); the corresponding eigenfunction delivers the
value ν1 to the quotient. The eigenfunctions ϕn (n = 1, 2, . . . ) belong to H1(W ) and
form a complete system in an appropriate Hilbert space (see, for example, [22]).

1.2. Axisymmetric containers. Now we turn to the problem of sloshing in ax-
isymmetric containers. It is convenient to introduce the cylindrical coordinates
(r, θ, y) so that

x = r cos θ, z = r sin θ. (1.7)

and to take the y-axis as the axis of symmetry for W . In this case F is typically
a disc on xz-plane (see Figure 1(a)). Moreover, we will consider W as obtained
by rotation of a domain D adjacent to both axes in the ry-plane. For such liquid
domains, we write W = W (D). It is convenient to think of D as the cross-sections
of W along the half-plane θ = 0. By F (D) and B(D) we denote the cross-sections
of F and B, respectively, while R(D) is the part of ∂D located on the y-axis (see
Figure 1(b)).

It is clear that the ansatz

ϕ = ψ(r, y) cos(mθ), or ϕ = ψ(r, y) sin(mθ), m = 0, 1, 2, . . . , (1.8)
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where ψ is bounded near R(D), reduces the eigenvalue problem (1.1)–(1.4) in W to
the following sequence of boundary value problems:

∂2ψ

∂r2
+

1

r

∂ψ

∂r
+
∂2ψ

∂y2
− m2

r2
ψ = 0 in D, (1.9)

∂ψ

∂y
= νψ on F (D), (1.10)

∂ψ

∂n
= 0 on B(D). (1.11)

These relations must hold for all m, and by (1.4), for m = 0 we also have that∫
F (D)

ψ(r, y)r dr dy = 0. (1.12)

The above reduction was applied by many authors, see, in particular, [29, p. 56],
[23, p. 294], [13, formulas (13), (14)].

The variational method guarantees that for every m = 0, 1, 2, . . ., the spectral
problem (1.9)–(1.12) has a sequence of eigenvalues

0 < νm,1 ≤ νm,2 ≤ νm,3 ≤ . . . , m = 0, 1, 2, . . . , (1.13)

and by ψm,k, m ≥ 0, k ≥ 1, we denote the double sequence of corresponding
eigenfunctions. Every eigenvalue in (1.13) has a finite multiplicity equal to the
number of repetitions; moreover, for every m ≥ 0 we have that νm,k → ∞ as
k →∞.

It is clear that, the sequence of eigenvalues {νn}∞n=1 of problem (1.1)–(1.4) for W
coincides with the double sequence {νm,k}∞m=0,k=1, with every number νm,k repeated
twice when m ≥ 1. Thus the sequence of problems (1.9)–(1.12) is equivalent to the
original sloshing problem.

1.3. Statement of results. We need the following definition. We say that a liquid
domain W satisfies the John condition when W ⊂ F × (−∞, 0).

The following theorem is the main result of this paper (cf. [20, Theorem 1.1], [26,
Theorem 2.1], [27, Theorem 3.1]).

Theorem 1.1. Let us consider the sloshing problem (1.1 - 1.4). Assume that a
liquid domain W is an axisymmetric, convex, bounded domain, satisfying the John
condition. We consider W as obtained by rotation of a domain D (see Figure 1).
Then we have:

(i) The fundamental eigenvalue ν1 equals ν1,1 and has multiplicity 2. Two lin-
early independent eigenfunctions corresponding to ν1 are given in cylindrical
coordinates by ψ1,1(r, y) cos θ and ψ1,1(r, y) sin θ.

(ii) After multiplication by ±1 we may assume that ψ1,1 > 0 on D. We have

∂ψ1,1

∂r
> 0,

∂ψ1,1

∂y
> 0 on D.

(iii) Let ϕ(x, y, z) be the eigenfunction corresponding to ν1 which is odd in x
variable (in cylidrical coordinates ϕ equals ψ1,1(r, y) cos θ). Denote W+ =
{(x, y, z) ∈ W : x > 0}. After multiplication by ±1 we may assume that
ϕ > 0 on W+. Then

∂ϕ

∂x
> 0 on W,

∂ϕ

∂y
> 0 on W+.
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For any other eigenfunction ϕ corresponding to ν1 there is a change of x, z
coordinates by a rotation around y-axis so that ϕ is odd in x variable.

The third part of the theorem has the following hydrodynamical meaning. If liquid
oscillates freely with the fundamental frequency ν1 then at every moment the free-
surface elevation of liquid is proportional to the fundamental eigenfunction ϕ(x, 0, z)
(see e.g. [28]). If we assume that ϕ(x, y, z) is odd in x variable then the elevation is
increasing along each line parallel to x axis during one half-period of liquid oscillation
and decreasing during the other half-period. In particular when the free surface is
F = {(x, y, z) : x2 + z2 < r2

0, y = 0} then the elevation has its maximum at (r0, 0, 0)
and minimum at (−r0, 0, 0) during one half-period of oscillation, whereas during
the other half-period the maximum and minimum values exchange places with one
another. This is the reason to call this property the ‘high spots’ theorem.

One could ask whether the assumption that W satisfies the John condition is
necessary in Theorem 1.1. It occurs that if W does not satisfy the John condition
then the monotonicity property of ψ1,1 does not necessarily hold. More precisely we
have

Proposition 1.2. Let us consider the sloshing problem (1.1 - 1.4). Assume that W
is an axisymmetric liquid domain for which F is a disk and B is a C2 surface. We
consider W as obtained by rotation of a domain D. After multiplication by ±1 we
may assume that ψ1,1 > 0 on D. If the angle between F (D) and B(D) at the point
where F (D) and B(D) meet (see Figure 1(b)) is bigger than π/2 and smaller than

π then ψ1,1 attains maximum in the interior of F (D), and ∂ψ1,1

∂r
changes the sign in

D.

One could also ask whether assumption about convexity of W is necessary in
Theorem 1.1. Indeed we will show monotonicity property of ψ1,1 for slightly more
general class of domains, see Definition 3.1 and Theorem 3.3. However for this class
of domains we were not able to prove that ν1 = ν1,1.

Although numerical results strongly suggest that Theorem 1.1 (i) should hold the
proof of Theorem 1.1 (i) is far from being trivial. The most difficult part of this
proof is to show that ν1 is not ν0,1 which is the smallest eigenvalue corresponding
to an axially symmetric eigenfunction. The proof of Theorem 1.1 (i) is based on
results by Troesch [35] obtained by inverse methods.

1.4. Organization of the paper. In Section 2 we prove Theorem 1.1 (i). The rest
of the paper deals with monotonicity properties of fundamental eigenfunctions. We
use methods from [20], which may be briefly described as deformations of domains.
In Section 3 we first define a new class of domains W and formulate monotonicity
properties of ψ1,1 for this class (see Theorem 3.3). Then we prove continuos depen-
dence of ν1,1 and ψ1,1 under certain variations of the domain. In Section 4 we prove
monotonicity properties of ψ1,1 for a special class of piecewise smooth domains. In
Section 5 we pass to the limit to obtain the same result for class W. As a conclusion
we obtain Theorem 1.1 (ii) and (iii).

Throughout the article, except Definition 3.4, Lemma 3.5 and Lemma 3.6, we
only study axisymmetric water domains W = W (D), with free surface F being
a disk. We switch freely between Cartesian and cylindrical coordinate systems.
By scaling, it will be often sufficient to consider the case when F is the unit disk
{(x, y, z) : x2 + y2 < 1, y = 0}. By a standard argument, ψ1,1 does not change sign
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in D, and ν1,1 < ν1,2. With no loss of generality, we assume that ψ1,1 is positive on
D. We frequently use the continuity of ψ1,1 on D and smoothness of ψ1,1 in D.

2. Fundamental eigenvalue

In this section we prove Theorem 1.1 (i). The most difficult element of the proof
of this theorem is to exclude the possibility that ν1 equals ν0,1.

At first we need to introduce an auxiliary Dirichlet-Steklov problem (see [3] for
formal introduction of this problem).

∆ϕ = 0 in W , (2.1)

∂ϕ

∂y
= ν̃ϕ on F , (2.2)

ϕ = 0 on B. (2.3)

Here we assume that W = W (D) is an axisymmetric liquid domain. The prob-
lem (2.1)–(2.3) has a variational formulation similar to the one described in the
Introduction for the sloshing problem (see (1.6)), with the only difference in the
class of admissible functions for the Rayleigh quotient, which is now the space of
H1(W ) functions which vanish continuously at B (see [3] for more details). Since
W is axisymmetric it is possible to use the same ansatz (1.8) for Dirichlet-Steklov
problem as for the sloshing problem. We denote the eigenvalues of (2.1)–(2.3) by
ν̃m,k(W ) in a similar manner as for the sloshing problem (1.1)–(1.4). A standard
argument shows that the first eigenvalue of (2.1)–(2.3) is simple, it equals ν̃0,1(W ),
the corresponding eigenfunction has constant sign, and it is the only eigenfunction
with this property.

Using standard arguments (see e.g. [3, Section 3], [26], [30]) one obtains the
following domain monotonicity results for eigenvalues for both the Dirichlet-Steklov
problem (2.1)–(2.3) and the sloshing problem (1.1)–(1.4). We omit the proofs of
these results because they are very similar to the proofs of Propositions 3.1.1 and
3.2.1 in [3].

Lemma 2.1. Let W1, W2 be axisymmetric liquid domains. If W1 ⊂ W2 and F1 ⊂ F2

then ν̃0,1(W1) ≥ ν̃0,1(W2).

Lemma 2.2. Let W1, W2 be axisymmetric liquid domains. If W1 ⊂ W2 and F1 = F2

then ν0,1(W1) ≤ ν0,1(W2) and ν1,1(W1) ≤ ν1,1(W2).

In the rest of this section W denotes a liquid domain satisfying assumptions of
Theorem 1.1 and such that F is the unit disk. By scaling it is sufficient to consider
only such case.

One of the important tools in the proof of Theorem 1.1 (i) is the Stokes stream
function Ψ corresponding to ϕ (see [28, p. 125–127]). Suppose that ϕ is an axisym-
metric eigenfunction of the sloshing problem (1.1)–(1.4). Then Ψ is the axisymmetric
continuous function defined on W by

∂ϕ

∂r
= −1

r

∂Ψ

∂y
,

∂ϕ

∂y
=

1

r

∂Ψ

∂r
. (2.4)

Here we use cylindrical coordinates (1.7). Since ϕ satisfies Neumann boundary
condition on B, Ψ is constant on B. Note that formula (2.4) defines Ψ uniquely up
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to a constant. Hence we may assume that Ψ = 0 on B. Furthermore, Ψ = 0 when
r = 0, and Ψ satisfies in W the relation

∂2Ψ

∂r2
− 1

r

∂Ψ

∂r
+
∂2Ψ

∂y2
= 0, r 6= 0.

In particular, Ψ attains its maximum and minimum on {r = 0} ∪ ∂W . From the
boundary conditions it follows that the extreme values of Ψ are attained on F .

In this section we will need the following result which follows by a classical
Courant-Hilbert argument (we omit the standard proof).

Lemma 2.3. Any axisymmetric eigenfunction of the problem (1.1)–(1.4) corre-
sponding to ν0,1(W ) has two nodal domains.

Lemma 2.4. Suppose that ν0,1(W ) < ν̃0,1(W ). Then the Stokes stream function Ψ
corresponding to an axisymmetric eigenfunction ϕ with the eigenvalue ν0,1(W ) has
constant sign on W .

Proof. Suppose, contrary to the hypothesis, that Ψ does not have constant sign. By
the maximum principle, Ψ must change sign on F . Since in cylindrical coordinates
(r, θ, y) we also have Ψ(0, θ, 0) = Ψ(1, θ, 0) = 0, it follows that there exist 0 < r1 <
r2 < 1 such that ∂Ψ

∂r
(r1, θ, 0) = ∂Ψ

∂r
(r2, θ, 0) = 0. But on F we have ν0,1(W )ϕ = ∂ϕ

∂y
=

1
r
∂Ψ
∂r

. It follows that the set {ϕ = 0} intersects F along at least two circles r = r1

and r = r2. Since ϕ has only two nodal domains W1, W2, one of them, say W1,
must touch F at the annulus r1 < r < r2. Since W2 is connected, we conclude that
∂W1 does not intersect B. Hence, ϕ restricted to W1 is the first eigenfunction of the
spectral problem (2.1)–(2.3) in W1 with F and B replaced by Int{y=0}(F ∩∂W1) and
(∂W1) \ F . Hence ν0,1(W ) = ν̃0,1(W1). Here Int{y=0}(F ∩ ∂W1) denotes the relative
interior of the set F ∩ ∂W1 in the plane y = 0.

By domain monotonicity, we have ν0,1(W ) = ν̃0,1(W1) ≥ ν̃0,1(W ), a contradiction
with the assumption ν0,1(W ) < ν̃0,1(W ). �

Lemma 2.5. Suppose that ν0,1(W ) < ν̃0,1(W ). If the stream function Ψ corre-
sponding to an axisymmetric eigenfunction ϕ satisfies ∂

∂r
(1
r
∂Ψ
∂r

) ≤ 0 on F , then ϕ
corresponds to the first axisymmetric eigenvalue ν0,1(W ).

Proof. Note that ∂
∂r

(1
r
∂Ψ
∂r

) < 0 at some point on F . Indeed, if ∂
∂r

(1
r
∂Ψ
∂r

) was identically
zero on F , we would have Ψ = C1 + C2r

2 on F , which contradicts Ψ = 0 for both
r = 0 and r = 1.

Let ν be the eigenvalue corresponding to ϕ. Let ϕ0,1 be an arbitrary axisymmetric
eigenfunction corresponding to ν0,1(W ) and Ψ0,1 be its stream function. We have∫

F

ϕϕ0,1 =
1

νν0,1

∫
F

∂ϕ

∂y

∂ϕ0,1

∂y
=

1

νν0,1

∫
F

1

r2

∂Ψ

∂r

∂Ψ0,1

∂r
.

Integration in polar coordinates and then integration by parts yield that∫
F

ϕϕ0,1 =
2π

νν0,1

∫ 1

0

1

r

∂Ψ

∂r

∂Ψ0,1

∂r
dr = − 2π

νν0,1

∫ 1

0

Ψ0,1
∂

∂r

(
1

r

∂Ψ

∂r

)
dr.

Since ∂
∂r

(1
r
∂Ψ
∂r

) ≤ 0 and it is not identically zero on F , and since Ψ0,1 has constant
sign on F (by Lemma 2.4), we obtain that

∫
F
ϕϕ0,1 6= 0. Hence ϕ corresponds to

ν0,1. �
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Now we come to the key element of the proof of Theorem 1.1 (i), the application
of the inverse method from Troesch paper [35]. In [35, p. 283–284] an eigenvalue
ν corresponding to an axisymmetric eigenfunction for the sloshing problem is com-
puted for a family of domains. With the notation of [35], we take a2 = 4, so that
the free surface is a unit disc. When λ ∈ (0, 2], then for the domain

Wλ = {(x, y, z) : x2 + z2 < 4y2 + 8y/λ+ 1, y < 0}
we simply have ν = λ; the corresponding eigenfunction is the polynomial ϕ =
1 + λy+ 4y2− 2r2 + (4/3)λy3− 2λr2y, where r2 = x2 + z2, and the stream function
corresponding to ϕ is Ψ = (λ/2)(r2− r4) + 4r2y+ 2λr2y2. Since ∂

∂r
(1
r
∂Ψ
∂r

) ≤ 0 on F ,
we may apply Lemma 2.5 an we obtain the following corollary.

Corollary 2.6. For the set Wλ, either ν0,1(Wλ) ≥ ν̃0,1(Wλ) or the Troesch eigenvalue
ν = λ is equal to ν0,1(Wλ).

It is a natural conjecture that in fact always ν = ν0,1(W ). However, we were not
able to prove it. For our purposes the above corollary is enough.

In the proof of Theorem 1.1 (i) we need some knowledge about sloshing eigenvalues
for cylinders. These eigenvalues are well known (see e.g. [3, example 2.1, p. 24]).
We collect some results about these eigenvalues which we need in this section in the
following lemma.

Lemma 2.7. Let h > 0, Uh = {(x, y, z) : x2 +z2 < 1, −h < y < 0}, F = {(x, y, z) :
x2 + z2 < 1, y = 0} and B = ∂Uh \ F . Let us consider the sloshing problem
(1.1)–(1.4) in the cylinder Uh. Then we have

ν1,1(Uh) = j′1,1 tanh(j′1,1h), ν̃0,1(Uh) = j0,1 coth(j0,1h),

where j′1,1 ≈ 1.8412 is the first positive zero of J ′1 and j0,1 ≈ 2.4048 is the first
positive zero of J0. Here J0 and J1 are Bessel functions of the first kind.

For any h > 0 we have ν1,1(Uh) < j′1,1 and ν̃0,1(Uh) > j0,1.

Proof of Theorem 1.1 (i). Let us recall that we assume that W is a liquid domain
satisfying assumptions of Theorem 1.1 and F = {(x, y, z) : x2 + z2 < 1, y = 0}.

First note that any eigenfunction of (1.1)–(1.4) corresponding to ν1(W ) must have
2 nodal domains. Eigenfunctions of (1.1)–(1.4) corresponding to νm,k(W ), m ≥ 2,
of the shape ψm,k(r, y) cos(mθ), ψm,k(r, y) sin(mθ), have at least 4 nodal domains,
so νm,k(W ) cannot be equal to ν1(W ) for m ≥ 2. Recall that ν1,2(W ) > ν1,1(W ).
Hence, in order to show that ν1(W ) = ν1,1(W ), we only need to prove that ν0,1(W ) >
ν1,1(W ).

Note that for λ ∈ (0, 2] we have 4y2 + 8y/λ + 1 ≤ (1 + 4y/λ)2, so that Wλ is
contained in the circular cone

Vλ = {(x, y, z) : x2 + z2 < (1 + 4y/λ)2, y < 0}.
For λ = 2, in fact, Wλ = Vλ. The height of Vλ is equal to λ/4. Hence, Uλ/4 is the
smallest vertical cylinder containing Vλ. By Lemma 2.7 ν1,1(Uλ/4) = j′1,1 tanh(j′1,1λ/4)
and ν̃0,1(Uλ/4) = j0,1 coth(j0,1λ/4).

Let h be the height of W . When h ≤ 1/2, then for λ = 4h we have Wλ ⊆ Vλ ⊆
W ⊆ Uλ/4. There are two possibilities.

(a) If ν0,1(Wλ) ≥ ν̃0,1(Wλ), then, by domain monotonicity and Lemma 2.7 we
have ν0,1(Wλ) ≥ ν̃0,1(Uλ/4) > ν1,1(Uλ/4).
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(b) Otherwise, by Corollary 2.6 we have ν0,1(Wλ) = λ, and since λ > (j′1,1)2λ/4 >
j′1,1 tanh(j′1,1λ/4) = ν1,1(Uλ/4), we also have ν0,1(Wλ) > ν1,1(Uλ/4).

Hence, in both cases, we have ν0,1(W ) ≥ ν0,1(Wλ) > ν1,1(Uλ/4) ≥ ν1,1(W ), as desired.
When the height h of W is larger then 1/2, then we simply have W2 = V2 ⊆ W ⊆

Uh. Again, there are two possibilities.

(a) If ν0,1(W2) ≥ ν̃0,1(W2), then by domain monotonicity and Lemma 2.7 we
have ν0,1(W2) ≥ ν̃0,1(W2) ≥ ν̃0,1(U2) > j0,1 > j′1,1.

(b) Otherwise, we have ν0,1(W2) = 2 > j′1,1.

As before, in both cases we have, by domain monotonicity and Lemma 2.7, ν0,1(W ) ≥
ν0,1(W2) > j′1,1 ≥ ν1,1(Uh) ≥ ν1,1(W ), which completes the proof of the inequality
ν0,1(W ) > ν1,1(W ).

Hence ν1(W ) = ν1,1(W ). There are exactly 2 linearly independent eigenfunctions
corresponding to ν1(W ) = ν1,1(W ): ψ1,1(r, y) cos(θ), ψ1,1(r, y) sin(θ). Hence ν1(W )
has multiplicity 2. �

3. Continuous dependence under variation of the domain

In this section we first define a new class of domains W and formulate monotonicity
properties of ψ1,1 for this class. Then we prove continuos dependence of ν1,1 and
ψ1,1 under certain variations of the domain. Ideas used in this section are similar to
the ideas from Section 2 in [20].

Let us first describe the class W in an informal way. The class W consists of
axially symmetric domains W with horizontal cross-sections being circles or radius
decreasing with depth −y. A similar condition for two-dimensional domains was
assumed in Theorem 1.1 in [20]. For technical reasons we will assume certain reg-
ularity near the free surface and the vertical axis. More formally, we first describe
the class D of cross-sections.

Definition 3.1. A domain D ⊂ {(r, y) : r > 0, y < 0} belongs to the class of
domains D iff its boundary consists of the following 3 parts (see Figure 2):

(i) the horizontal interval F (D) = {(r, y) : r ∈ [0, r0), y = 0}, where r0 > 0;
(ii) the vertical interval R(D) = {(r, y) : r = 0, y ∈ (y0, 0]}, where y0 < 0;
(iii) B(D), parametrized by a simple continuous curve (r(t), y(t)), t ∈ [0, T ],

satisfying the following conditions:
(a) (r(0), y(0)) = (0, y0), (r(T ), y(T )) = (r0, 0), and r(t) > 0 and y(t) < 0

are nondecreasing for t ∈ [0, T ],
(b) there exist ε > 0 (ε ≤ T/2) and M ≥ 1 such that for t ∈ [0, ε], r(t) = t

and y(t) is a Lipschitz function with Lipschitz constant M , and for
t ∈ [T − ε, T ], y(t) = t− T and r(t) is a Lipschitz function on [T − ε, T ]
with Lipschitz constant M .

For fixed ε > 0, M ≥ 1, H > ε, r0 > ε, we write D ∈ D(ε,M,H, r0) when the above
relations hold with the prescribed ε, M and r0, and for some y0 ∈ (−H,−ε).

Definition 3.2. The domain W ⊂ {(x, y, z) : x, z ∈ R, y < 0} belongs to the class
of domains W iff

W = W (D) = {(x, y, z) ∈ R3 : (
√
x2 + z2, y) ∈ D ∪R(D)}

for some D ∈ D.
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r

y

ε F (D)

R(D) B(D)

r0
−ε

y0
−H

D

Figure 2. An example of a domain D belonging to the class D.

For W = W (D) ∈ W we will always assume that its boundary ∂W consists of 2
nonempty parts F , B with B = ∂W \ F and F = {(x, y, z) : x2 + z2 < r2

0, y = 0}
where r0 is the number appearing in the definition of D.

By W(ε,M,H, r0) (ε > 0, M ≥ 1, H > ε, r0 > ε) we denote these domains
W = W (D) from W for which D ∈ D(ε,M,H, r0).

Note that all bounded, convex, axisymmetric domains satisfying the John condi-
tion belong to W. We are able to prove the monotonicity of ψ1,1 stated in Theo-
rem 1.1 for all W ∈W.

Theorem 3.3. Let D ∈ D, W = W (D) ∈ W. Let ψ1,1 be the eigenfunction of
(1.9)–(1.12) corresponding to the eigenvalue ν1,1 for the domain W = W (D). After
multiplication by ±1 we may assume that ψ1,1 > 0 on D. Then we have

∂ψ1,1

∂r
> 0 in D, (3.1)

∂ψ1,1

∂y
> 0 in D. (3.2)

In order to use methods from [20] we need to introduce another class of domains.
This class may be briefly desribed as star-shaped Lipschitz domains (cf. definition
of class LM in [20, p. 744]).

Definition 3.4. Let p0 ∈ R3. By A(p0) we denote the class of domains W ⊂ R3

such that

W =

{
p ∈ R3 : 0 < |p− p0| < f

(
p− p0

|p− p0|

)}
∪ {p0}

for some positive Lipschitz function f on the unit sphere S2 ⊂ R3. If 0 < r1 < r2

and η > 0, then by A(p0, r1, r2, η) we denote the subclass of A(p0) for which f is a
Lipschitz function with Lipschitz constant η such that r1 < f < r2.

Lemma 3.5. Let p0 ∈ R3. If W ∈ A(p0), then W is a Lipschitz domain; that is,
there exist constants δ > 0, N ∈ N, L > 0 such that the boundary ∂W may be
covered by balls Bi, i = 1, . . . , N of radii δ, and such that for each i, Bi ∩ ∂W is the
graph of a Lipschitz function with Lipschitz constant L. When 0 < r1 < r2, η > 0
and W ∈ A(p0, r1, r2, η), then δ, N and L depend only on r1, r2, η.

The proof of this lemma is standard and is omitted.
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We will use the following notation: we will write C(α, β, . . .) to indicate that C
is a constant depending only on α, β, . . ..

The following lemma is the crucial result which is taken from [20].

Lemma 3.6. Let p0 ∈ R3 and let W ∈ A(p0) be a liquid domain contained in
a ball B(p0, r2). Let ϕ be a solution of the eigenvalue problem (1.1)–(1.4) such
that

∫
F
ϕ2 = 1, and let ν be the corresponding eigenvalue. Then ϕ ∈ H3/2(W )

and there is an extension ϕ̃ ∈ H3/2(R3) of ϕ (that is, ϕ̃ = ϕ on W ) such that
supp ϕ̃ ⊂ B(x0, r2 + 1). In particular, ∇ϕ̃ ∈ L3(R3).

Suppose that 0 < r1 < r2, η > 0, ν0 > 0 and a > 0. If W ∈ A(p0, r1, r2, η), ν ≤ ν0

and ‖ϕ‖L2(W ) ≤ a, then ‖ϕ‖H3/2(W ), ‖ϕ̃‖H3/2(R3) and ‖∇ϕ̃‖L3(R3) are bounded above
by constants depending only on r1, r2, η, ν0 and a.

Proof. The proof is based on the arguments used in the proof of Lemma 2.5 in [20].
For the convenience of the reader we write here much more details, but the main
idea is exactly the same. As it will be seen below the fact that ϕ ∈ H3/2(W ) follows
easily from [17] and [18]. What is more difficult to justify is the fact that the norm
‖ϕ‖H3/2(W ) depends only on r1, r2, η, ν0 and a, and the properties of the extension.
In order to justify these facts we repeat some of the arguments from [18].

Suppose that W ∈ A(p0, r1, r2, η). Consider ϕ as the solution of the Neumann
problem

∆ϕ = 0 on W,
∂ϕ

∂n
= ν1Fϕ on ∂W.

By M(u) we denote the nontangential maximal function of the function u : W → R

defined for q ∈ ∂W by

M(u)(q) = sup{|u(p)| : p ∈ W, |p− q| < κ dist(p, ∂W )}
(cf. [17, p. 22], or [19]). Here we take κ = 2(L + 1) where L is the constant from
Lemma 3.5. Of course L and κ depend only on r1, r2 and η. By M(∇ϕ) we mean
M(∂ϕ

∂x
) +M(∂ϕ

∂y
) +M(∂ϕ

∂z
). Theorem 4.1 in [17] or Theorem 2 in [19] give that

‖M(∇ϕ)‖L2(∂W ) ≤ C‖ν1Fϕ‖L2(∂W ) = Cν2

∫
F

ϕ2 = Cν2 ≤ Cν2
0 , (3.3)

and Corollary 5.7 in [18] (cf. also [19, Remark (b), p. 206]) gives that ϕ ∈ H3/2(W ).
Now our aim will be to show that the norm ‖ϕ‖H3/2(W ) depends only on r1, r2,

η, ν0, a. At first we want to justify that the norm ‖M(∇ϕ)‖L2(∂W ) depends only
on r1, r2, η and ν0. This follows from the proof of Theorem 2 in [19]. Indeed this
theorem is proved first for star-shaped smooth domains Ω = {(r, θ) : 0 ≤ r < Ψ(θ)},
Ψ ∈ C∞(Sn−1), see [19, p. 205, line 4]. For such domains the assertion of Theorem
2 holds with a constant depending only on the Lipschitz constant of the function
Ψ, ‖Ψ‖∞, minθ∈Sn−1 |Ψ(θ)| and κ, see [19, p. 205, formula (5)]. The rest of the
proof of Theorem 2 is the approximation of general star-shaped domains by smooth
star-shaped domains. It occurs that the constant C in the formulation of Theorem
2 depends only on the Lipschitz constant of the function Ψ defing the star-shaped
Lipschitz domain, ‖Ψ‖∞, minθ∈Sn−1 |Ψ(θ)| and κ. In our situation this gives that the
constant C appearing in (3.3) depends only on r1, r2 and η. Note that in [19] the
nontangential maximal function is defined for κ = 2 but the proof for the constant
κ = 2(L+ 1) is exactly the same.
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Now let

Γ(q) = {p ∈ W : |p− q| < κ dist(p, ∂W )}, q ∈ ∂W
and define the area integral of a function v : W → R by

S(v)(q) =

(∫
Γ(q)

dist(p, ∂W )−1|∇v(p)|2 dp
)1/2

.

By S(∇v) we mean S( ∂v
∂x

) + S(∂v
∂y

) + S(∂v
∂z

). By Theorem 5.4 in [18] (cf. also [18,

Corollary 5.7, (a) =⇒ (c)]) and (3.3) we obtain

‖S(∇ϕ)‖L2(∂W ) ≤ C‖M(∇ϕ)‖L2(∂W ) ≤ C ′,

where C ′ = C ′(r1, r2, η, ν0). We claim that (cf. [18, Corollary 5.7])∫
W

dist(p, ∂W )|∇2ϕ(p)|2 dp < C ′′, (3.4)

where C ′′ = C ′′(r1, r2, η, ν0). Here ∇2ϕ is the vector of all second derivatives of
ϕ (cf. [18, p. 181, line 6]). The inequality for the integral over a neighborhood
of ∂W follows from the estimate of ‖S(∇ϕ)‖L2(∂W ) by appling the argument used

in the proof of the upper bound inequality in (6.1) of [8] to each of ∂ϕ
∂x

, ∂ϕ
∂y

, ∂ϕ
∂z

.

The integral over the remaining compact subset of W is bounded using a simple
gradient estimate for each of the harmonic functions ∂ϕ

∂x
, ∂ϕ
∂y

, ∂ϕ
∂z

, and the inequality∫
W
|∇ϕ|2 = ν ≤ ν0. Our claim is proved.

Now we will argue like in Corollary 5.7, (c) =⇒ (b) in [18]. Note that ∇ϕ is
harmonic so one could use Corollary 5.5, (c) =⇒ (b) in [18] for v = ∇ϕ. The
implication (c) =⇒ (b) in Corollary 5.5 in [18] follows from the proof of Theorem
4.1, (b) =⇒ (a) in [18] for u = v = ∇ϕ. Indeed we have

‖δ1/2(p)∇u(p)‖L2(W ) + ‖u‖L2(W ) ≤ C(r, R, η, ν0)

for u = ∇ϕ, δ(p) = dist(p, ∂W ). From the proof of Theorem 4.1, (b) =⇒ (a) in [18]
it follows that

u = ∇ϕ ∈ [L2(W ), H1(W )]1/2,2

and ‖∇ϕ‖[L2(W ),H1(W )]1/2,2 ≤ C(r1, r2, η, ν0). The last inequality follows from the

proof of Theorem 4.1, (b) =⇒ (a) in [18] and Lemma 3.5. Here [L2(W ), H1(W )]1/2,2
is the interpolation space of power 1/2 given by the real interpolation method and
∇ϕ ∈ [L2(W ), H1(W )]1/2,2 means that ∂ϕ

∂x
, ∂ϕ
∂y
, ∂ϕ
∂z
∈ [L2(W ), H1(W )]1/2,2.

Now we will argue in the similar way like in Proposition 2.17 in [18] (or in Propo-
sition 2.4 in [18] with real interpolation instead of complex interpolation). By The-
orem VI.5 in [33] for any bounded Lipschitz domain D ⊂ Rn there is an extension
operator E mapping functions on D to functions on Rn such that Ef(x) = f(x),
x ∈ D, and such that for each k ∈ N, E is a bounded operator from Hk(D) to
Hk(Rn) (cf. also Theorem 2.3 in [18]) (H0 = L2). When D is contained in a ball
B(p,R), R > 0, the operator E may be chosen so that for any function f on D we
have supp(Ef) ⊂ B(p,R + 1). Assume that there exist numbers δ > 0, N ∈ N,
L > 0 such that the boundary ∂D may be covered by balls Bi, i = 1, . . . , N of radii
δ such that for each i, Bi ∩ ∂D is the graph of a Lipschitz function with Lipschitz
constant L. It follows from Theorem VI.5’ in [33] and the proof of Theorem VI.5
in [33] ( pages 190–192, see in particular (31) on page 191 and inequalities on page
192) that the norm of E : Hk(D)→ Hk(Rn) depends only on n, k, δ, N , L. What is
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y

h0

y0 + h0
−H + h0

α̂

D′
r1

Figure 3. An auxiliary picture for Lemma 3.7.

more formula (1.19), page 174 from [18], arguments after this formula and formula
(31), page 191 in [33] give that

∂

∂xj
(Ef) =

n∑
i=1

Qj,i(
∂

∂xj
f) + Sj(f), j = 1, . . . , n, (3.5)

where Qj,i, Sj are bounded linear operators from Hk(D) to Hk(Rn) such that their
norms depend only on n, k, δ, N , L. It follows that if f,∇f ∈ Hk(D) then ∇(Ef) ∈
Hk(Rn) and ‖∇(Ef)‖Hk(Rn) ≤ C(n, k, δ,N, L)(‖∇f‖Hk(D) + ‖f‖Hk(D))

Now let us come back to our situation. By Lemma 3.5 the norms of E, Qj,i,
Sj as bounded linear operators from Hk(W ) to Hk(R3) depend only on k, r1,
r2, η. We know that ϕ ∈ H1(W ), ∇ϕ ∈ [H0(W ), H1(W )]1/2,2 and ‖ϕ‖H1(W ) ≤
C(r1, r2, η, ν0, a), ‖∇ϕ‖[H0(W ),H1(W )]1/2,2 ≤ C(r1, r2, η, ν0). By the real interpolation

method and (3.5) (cf. the proof of Proposition 2.4 in [18]) it follows that Eϕ ∈
H1(R3), ∇(Eϕ) ∈ [H0(R3), H1(R3)]1/2,2 and also ‖Eϕ‖H1(R3) ≤ C(r1, r2, η, ν0, a),
‖∇(Eϕ)‖[H0(R3),H1(R3)]1/2,2 ≤ C(r1, r2, η, ν0, a).

We have

[H0(R3), H1(R3)]1/2,2 = B
1/2
2,2 (R3) ⊂ H1/2(R3) ⊂ L3(R3),

where B
1/2
2,2 (R3) is the Besov space and both inclusions are continuous embeddings.

The equality follows from Theorem 6.2.4 [5], the first inclusion follows from Theorem
6.4.4 in [5] and the second inclusion follows from Theorem 6.5.1 in [5].

Recall also that supp(Eϕ), supp(∇(Eϕ)) ⊂ B(p0, r2 +1). It follows that ∇(Eϕ) ∈
L3(B(p0, r2 + 1)) and ‖∇(Eϕ)‖L3(B(p0,r2+1)) ≤ C(r1, r2, η, ν0, a). We also have Eϕ ∈
H1(B(p0, r2 + 1)), ∇(Eϕ) ∈ H1/2(B(p0, r2 + 1)), and the norms ‖Eϕ‖H1(B(p0,r2+1)),
‖∇(Eϕ)‖H1/2(B(p0,r2+1)) are bounded by C(r1, r2, η, ν0, a). It follows that ( see e.g.

[12, formula (38)], cf. also [18, Proposition 2.18(a)]) Eϕ ∈ H3/2(B(p0, r2 + 1)) and
‖Eϕ‖H3/2(B(p0,r2+1)) ≤ C(r1, r2, η, ν0, a). �

Recall that by scaling it is sufficient to consider the domains W such that F is
a unit disk. For this reason we only consider W ∈ W(ε,M,H, 1) (that is we fix
r0 = 1).

Lemma 3.7. Fix ε ∈ (0, 1), M ≥ 1, H > ε. Assume that D ∈ D(ε,M,H, 1). Let
h0 = ε/(2M) and let D′ be the translation of D by the vector (0, h0) (see Figure 3).
Let (r̂, α̂) be the polar coordinate system in the (r, y) plane, with y = r̂ cos α̂ and
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r = r̂ sin α̂. Then there is a Lipschitz function f on [0, π] such that D′ = {0 < r̂ <
f(α̂), 0 < α̂ < π}. Furthermore, the Lipschitz constant of f , the infimum of f and
the supremum of f depend only on ε,M,H.

Proof. The proof of this lemma is standard. Let (r(t), y(t)), t ∈ [0, T ], be the curve
from the definition of D. Then the boundary of D′ consists of a part of the y-
axis, a horizontal interval, and the curve (r(t), y(t) + h0), t ∈ [0, T ]. In the polar
coordinates, this curve is given by

r̂(t) =
√

(r(t))2 + (y(t) + h0)2, α̂(t) =
π

2
+ arctan

y(t) + h0

r(t)
.

Our goal is to prove that α̂(t) is increasing, and that f = r ◦ α̂−1 is a Lipschitz
function.

By an appropriate reparametrization, with no loss of generality we assume that
r(t) and y(t) are absolutely continuous functions of t, and r′(t) + y′(t) > 0 for
a.e. t ∈ [0, T ]. Since r(t) ≥ r(ε) = ε for t ∈ [ε, T ], and y(t) ≤ y(T − ε) = −ε
for t ∈ [0, T − ε], we have r̂(t) ≥ ε − h0 for all t. Furthermore, r′(t) = 1 and
0 ≤ y′(t) ≤ M for a.e. t ∈ [0, ε], and similarly 0 ≤ r′(t) ≤ M and y′(t) = 1 for a.e.

t ∈ [T − ε, T ]. We find that r̂(t) and ˆα(t) are absolutely continuous, and for a.e.
t ∈ [0, T ],

r̂′(t) =
r(t)r′(t) + (y(t) + h0)y′(t)

r̂(t)
, α̂′(t) =

r(t)y′(t)− (y(t) + h0)r′(t)

(r̂(t))2
.

For a.e. t ∈ [ε, T − ε], we have

α̂′(t) ≥ εy′(t) + (ε− h0)r′(t)

(r̂(t))2
≥ ε

2

y′(t) + r′(t)

(r̂(t))2
.

For a.e. t ∈ [0, ε],

α̂′(t) =
ty′(t)− (y(t) + h0)

(r̂(t))2
≥ ε− h0

(r̂(t))2
≥ ε

2(1 +M)

y′(t) + r′(t)

(r̂(t))2
.

Finally, for a.e. t ∈ [T − ε, T ],

α̂′(t) =
r(t)− (t− T + h0)r′(t)

(r̂(t))2
≥ ε− h0M

(r̂(t))2
≥ ε

2

1

(r̂(t))2
≥ ε

2(1 +M)

y′(t) + r′(t)

(r̂(t))2
.

In particular, α̂(t) is strictly increasing, with α̂(0) = 0 and α̂(T ) = π/2+arctan(h0).
Furthermore, in a similar manner, we have for a.e. t ∈ [0, T ],

|r̂′(t)| ≤ r(t)r′(t) + |y(t) + h0|y′(t)
r̂(t)

≤ (1 +H + ε)
r′(t) + y′(t)

r̂(t)
.

Hence, for a.e. t ∈ [0, T ],

|r̂′(t)|
α̂′(t)

≤ (1 +H + ε)
2(1 +M)

ε
r̂(t) ≤ 2(1 +M)(1 +H + ε)2

ε
.

It follows that D′ = {0 < r̂ < f(α̂), 0 < α̂ < π} with f(α̂) given by f(α̂(t)) = r̂(t),
t ∈ [0, T ] (that is, for α̂ ∈ [0, α̂(T )]), and by f(α̂) = −h0/ cos α̂ for α̂ ∈ [α̂(T ), π].
Since r̂(t) ≥ ε − h0 ≥ ε/2, f is bounded below by ε/2. Also, f(α̂) ≤ 1 + H + ε.
Finally, f is absolutely continuous, for a.e. t ∈ [0, T ] we have

|f ′(α̂(t))| = |r̂
′(t)|
α̂′(t)

≤ 2(1 +M)(1 +H + ε)2

ε
,
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and for α̂ ≥ α̂(T ),

|f ′(α̂)| = h0 sin α̂

(cos α̂)2
≤ h0

(sin(arctan(h0)))2
=
h2

0 + 1

h0

,

so that f is a Lipschitz function with Lipschitz constant depending on ε,M,H. �

As an immediate conclusion of this lemma we obtain the following result.

Corollary 3.8. Let ε ∈ (0, 1), M ≥ 1, H > ε and assume that W ∈W(ε,M,H, 1).
Then there exist p0 = (0,−ε/(2M), 0) and 0 < r1 < r2, η ≥ 1 depending only on ε,
M , H such that W ∈ A(p0, r1, r2, η).

As in [20] we define the distance between domains (cf. page 745 in [20]).

Definition 3.9. Fix ε ∈ (0, 1), M ≥ 1, H > ε. Put p0 = (0,−ε/(2M), 0). Let
W1,W2 ∈W(ε,M,H, 1). Corollary 3.8 gives that Wi ∈ A(p0), so

Wi =

{
p ∈ R3 : 0 < |p− p0| < fi

(
p− p0

|p− p0|

)}
∪ {p0} , i = 1, 2,

for some Lipschitz functions fi on the unit sphere S2. We define the distance between
W1,W2 ∈W(ε,M,H, 1) by

dW(ε,M,H,1)(W1,W2) = ‖f1 − f2‖∞.
When it is clear to which class W1,W2 belong we will abbreviate dW(ε,M,H,1)(W1,W2)
to d(W1,W2).

Roughly speaking, we measure the distance between W1, W2 ∈ W(ε,M,H, 1) as
the natural distance between star-shaped domains in the class A(p0) for a special
choice of p0 depending on ε, M .

Lemma 3.10. Assume that Ds ∈ D(ε,M,H, 1) for s in a neighborhood of 0, for
some fixed ε ∈ (0, 1), M ≥ 1, H > ε. Let rs(t), ys(t) be functions defining B(Ds) in
the sense of Definition 3.1. Assume that all functions rs, ys are defined on [0, T ],
and that ‖rs − r0‖∞ → 0 and ‖ys − y0‖∞ → 0 as s→ 0. Then

d(Ws,W0) = dW(ε,M,H,1)(Ws,W0)→ 0, as s→ 0,

where Ws = W (Ds).

Proof. Let r̂s(t), α̂s(t), fs(α̂) be defined as in Lemma 3.7 (see Figure 3), but for the
domain Ds. Note that fs(α̂) = f0(α̂) for α̂ greater than α̂s(T ) = α̂0(T ).

Clearly, r̂s(t) → r̂0(t) as s → 0 uniformly in t ∈ [0, T ]. In a similar manner,
since rs(t) ≥ ε for t ∈ [ε, T ], we have α̂s(t) → α̂0(t) uniformly in t ∈ [ε, T ]. Fur-
thermore, for t ∈ [0, ε] we have ys(t) + h0 ≤ −(ε − h0) ≤ −ε/2, and α̂s(t) =
− arctan(rs(t)/(ys(t)+h0)). It follows that α̂s(t)→ α̂0(t) uniformly also in t ∈ [0, ε].
Finally, since all of fs are Lipschitz functions with Lipschitz constant η, we have

|fs(α̂0(t))− f0(α̂0(t))| ≤ |fs(α̂0(t))− fs(α̂s(t))|+ |fs(α̂s(t))− f0(α̂0(t))|
≤ η|α̂0(t)− α̂s(t)|+ |r̂s(t)− r̂0(t)|,

which converges to 0 uniformly in t ∈ [0, T ]. Therefore, fs(α̂)→ f0(α̂) uniformly in
α̂, and the lemma follows. �
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From now on we will be interested in eigenfunctions of (1.1)–(1.4) corresponding
to ν1,1. In the rest of the paper we will use the following notation:

ψ(r, y) = ψ1,1(r, y), ϕ(r, θ, y) = ψ1,1(r, y) cos θ, ν = ν1,1. (3.6)

We use here cylindrical coordinates (r, θ, y) defined in (1.7), cf. (1.8). By ϕ(x, y, z)
we denote the function ϕ(r, θ, y) written in Cartesian coordinates (x, y, z). Recall
that ϕ(x, y, z) is one of the eigenfunctions of (1.1)–(1.4) corresponding to ν = ν1,1,
ϕ(−x, y, z) = −ϕ(x, y, z), and ψ > 0 on D. We will always assume that ϕ is
normalized so that

∫
F
ϕ2 = 1. Since in this section we discuss the problem (1.1)–

(1.4) for more than one liquid domain, we will indicate the dependence on W in the
subscript, as in ψW , ϕW , νW .

Lemma 3.11. Let W ∈W(ε,M,H, 1). There exist absolute constants C1, C2 such
that

νW =

∫
W

|∇ϕW |2 ≤ C1,

∫
W

ϕ2
W ≤ C2.

Proof. Note that W is a subset of a cylinder {(x, y, z) : x2 + z2 < 1, −H < y < 0}.
By Lemmas 2.2 and 2.7 we get νW < j′1,1. By the variational characterization of νW
and

∫
F
ϕ2
W = 1 we have νW =

∫
W
|∇ϕW |2.

Let Wx be the orthogonal projection of W on the yz-plane. For any p ∈ Wx,
let l(p) be the cross-section of W with the line parallel to the x-axis and passing
through p. Then l(p) is an interval symmetric with respect to the yz-plane, and l(p)
has length |l(p)| ≤ 2. Since ϕW (x, y, z) is odd with respect to the x-variable, for
any p ∈ Wx we have∫

l(p)

ϕ2
W ≤

|l(p)|2
π2

∫
l(p)

(
∂ϕW
∂x

)2

≤ 4

π2

∫
l(p)

(
∂ϕW
∂x

)2

Hence ∫
W

ϕ2
W =

∫
Wx

(∫
l(p)

ϕ2
W

)
dp ≤ 4

π2

∫
Wx

(∫
l(p)

(
∂ϕW
∂x

)2
)

dp

=
4

π2

∫
W

(
∂ϕW
∂x

)2

≤ 4

π2

∫
W

|∇ϕW |2. �

The following lemma is analogous to Lemma 2.5 in [20].

Lemma 3.12. There is a constant C(ε,M,H) such that if W1,W2 ∈W(ε,M,H, 1)
and νW1, νW2 are corresponding eigenvalues ν for domains W1, W2 then

|νW1 − νW2| ≤ C(ε,M,H)d(W1,W2)1/3.

Proof. By Corollary 3.8, W1,W2 ∈ A(p0, r1, r2, η) for p0 = (0,−ε/(2M), 0) ∈ R3 and
some 0 < r1 < r2 and η depending only on ε, M , H. Using this, Lemma 3.11 and
Lemma 3.6 we obtain that ϕi ∈ H3/2(Wi) and ‖ϕWi

‖H3/2(Wi) ≤ C1 = C1(ε,M,H) for
i = 1, 2. Also by Lemma 3.6 there exist extensions ϕ̃Wi

(i = 1, 2) of functions ϕWi

such that supp(ϕ̃Wi
) ⊂ B(p0, r2 + 1) and ‖ϕ̃Wi

‖H3/2(R3) ≤ C2 = C2(ε,M,H). By a
symmetrization argument, we may also assume that these extensions ϕ̃Wi

are again
odd functions of x. Lemma 3.6 gives also that ‖∇ϕ̃Wi

‖L3(R3) ≤ C3 = C3(ε,M,H).
We have∫

W1

|∇ϕ̃W2 |2 =

∫
W2

|∇ϕW2|2 +

∫
W1\W2

|∇ϕ̃W2 |2 −
∫
W2\W1

|∇ϕW2|2. (3.7)
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By Hölder’s inequality (for p = 3, q = 3/2) we get∫
W1\W2

|∇ϕ̃W2|2 =

∫
R3

1W1\W2|∇ϕ̃W2 |2 ≤ ‖1W1\W2‖L3(R3)‖ |∇ϕ̃W2|2‖L3/2(R3)

= |W1 \W2|1/3‖∇ϕ̃W2‖2
L3(R3) ≤ C4|W1 \W2|1/3 ≤ C5d(W1,W2)1/3,

where C4, C5 are constants depending only on ε, M and H.
Note also that

∫
W2
|∇ϕW2|2 = νW2 and

∫
F
ϕ̃2
W2

=
∫
F
ϕ2
W2

= 1. By the variational

characterization of ν and (3.7) it follows that

νW1 ≤
∫
W1
|∇ϕ̃W2|2∫

F
ϕ̃2
W2

(x, 0, z) dx dz
≤ νW2 + C5d(W1,W2)1/3.

In the similar way we get νW2 ≤ νW1 + C5d(W1,W2)1/3. �

Let W ∈ W(ε,M,H, 1). Recall that the eigenfunction ϕW has the lowest eigen-
value νW among all the eigenfunctions of the problem (1.1 - 1.4) on W which are
odd functions of x, and the next such eigenvalue is strictly greater. We denote it
by νW + εW , where εW > 0 is a constant depending on W . Hence if g ∈ H1(W ),∫
F
ϕWg = 0 and g is odd with respect to x, then∫

W

|∇g|2 ≥ (νW + εW )

∫
F

g2. (3.8)

Lemma 3.13. Let W1,W2 ∈W(ε,M,H, 1). There is a constant C = C(ε, εW1 ,M,H)
such that ∫

F

|ϕW1 − ϕW2|2 ≤ Cd(W1,W2)1/3, (3.9)

1 ≥
∫
F

ϕW1ϕW2 ≥ 1− C

2
d(W1,W2)1/3. (3.10)

Proof. Recall that ϕWi
(i = 1, 2) are normalized so that

∫
F
|ϕWi
|2 = 1, ϕWi

> 0 on
W+ and ϕWi

< 0 on W−, where W+ = {(x, y, z) ∈ W : x > 0}, W− = {(x, y, z) ∈
W : x < 0}.

First note that (3.10) follows easily from (3.9) and the equality

2

∫
F

ϕW1ϕW2 = −
∫
F

(ϕW1 − ϕW2)
2 +

∫
F

ϕ2
W1

+

∫
F

ϕ2
W2

= 2−
∫
F

(ϕW1 − ϕW2)
2.

Hence, it is sufficient to show (3.9). Put α1 =
∫
F
ϕW1ϕW2 . By the normalization of

ϕW1 and ϕW2 we have 0 < α1 ≤ 1. Let g = ϕ̃W2 − α1ϕ̃W1 , where ϕ̃W1 , ϕ̃W2 are the
extensions of ϕW1 , ϕW2 defined in the proof of Lemma 3.12. On W1∩W2, ϕ̃Wi

= ϕWi

are continuous (i = 1, 2), and so also g is continuous on W1 ∩W2. In particular g is
continuous on F . We also have g ∈ L2(F ), and by the definition of α1 we have∫

F

ϕW1g = 0. (3.11)
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Furthermore, g ∈ H3/2(W1) ⊂ H1(W1). By arguments as in the proof of Lemma
3.12,

νW2 =

∫
W2

|∇ϕW2|2 =

∫
W1

|∇ϕ̃W2|2 +

∫
W2\W1

|∇ϕ̃W2|2 −
∫
W1\W2

|∇ϕ̃W2 |2

≥
∫
W1

|∇ϕ̃W2|2 − C1d(W1,W2)1/3

=

∫
W1

|∇(α1ϕW1 + g)|2 − C1d(W1,W2)1/3

= α2
1

∫
W1

|∇ϕ̃W1 |2 + 2α1

∫
W1

∇ϕ̃W1∇g +

∫
W1

|∇g|2 − C1d(W1,W2)1/3,

(3.12)

where C1 = C1(ε,M,H). We have
∫
W1
|∇ϕ̃W1|2 = νW1 , and by the Green’s formula

and (3.11) we get∫
W1

∇ϕ̃W1∇g =

∫
B1

(
∂ϕW1

∂n

)
g +

∫
F

(
∂ϕW1

∂y

)
g −

∫
W1

(∆ϕW1)g

= νW1

∫
F

ϕW1g = 0.

Since g is odd with respect to x (because ϕ̃W1 and ϕ̃W2 are odd) and g ∈ H1(W1),
by (3.11) and (3.8) we get∫

W1

|∇g|2 ≥ (νW1 + εW1)

∫
F

g2.

Put α2 = (
∫
F
g2)1/2. By the definition of α1 and the normalization of ϕW2 we have

α2
1 + α2

2 = 1. From (3.12) we get

νW2 ≥ α2
1νW1 + α2

2(νW1 + εW1)− C1d(W1,W2)1/3

= νW1 + α2
2εW1 − C1d(W1,W2)1/3,

where C1 = C1(ε,M,H). Using this and Lemma 3.12 we obtain

α2
2 ≤

νW2 − νW1 + C1d(W1,W2)1/3

εW1

≤ C2d(W1,W2)1/3

εW1

,

where C2 = C2(ε,M,H). Finally we have∫
F

|ϕW1 − ϕW2|2 = 2− 2α1 ≤ 2− 2α2
1 = 2α2

2 ≤
2C2d(W1,W2)1/3

εW1

.

Here we used the fact that 0 ≤ α1 ≤ 1. �

Lemma 3.14. Let W1,W2 ∈W(ε,M,H, 1). There is a constant C = C(ε, εW1 ,M,H)
such that ∫

W1∩W2

|∇(ϕW1 − ϕW2)|2 ≤ Cd(W1,W2)1/3. (3.13)

Proof. We have∫
W1∩W2

|∇(ϕW1 − ϕW2)|2 ≤
∫
W1

|∇ϕW1|2 +

∫
W1

|∇ϕ̃W2|2 − 2

∫
W1

∇ϕW1∇ϕ̃W2 .
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Note that
∫
W1
|∇ϕW1|2 = νW1 and, as in the proof of Lemma 3.12,∫

W1

|∇ϕ̃W2|2 =

∫
W2

|∇ϕ̃W2|2 −
∫
W2\W1

|∇ϕ̃W2 |2 +

∫
W1\W2

|∇ϕ̃W2|2

≤ νW2 + C1d(W1,W2)1/3

≤ νW1 + C2d(W1,W2)1/3

where C1 = C1(ε,M,H) and C2 = C2(ε,M,H). By the Green’s formula and
Lemma 3.13 we obtain∫

W1

∇ϕW1∇ϕ̃W2 =

∫
B1

(
∂ϕW1

∂n

)
ϕ̃W2 +

∫
F

(
∂ϕW1

∂y

)
ϕ̃W2 −

∫
W1

(∆ϕW1)ϕ̃W2

= νW1

∫
F

ϕW1ϕW2

≥ νW1 −
νW1C3

2
d(W1,W2)1/3

≥ νW1 − C4d(W1,W2)1/3,

where C3 = C3(ε, εW1 ,M,H) and C4 = C4(ε, εW1 ,M,H). The last inequality follows
from Lemma 3.11. Finally, we obtain∫

W1∩W2

|∇(ϕW1 − ϕW2)|2 ≤ 2νW1 + C2d(W1,W2)1/3 − 2νW1 + 2C4d(W1,W2)1/3

which gives the assertion of the lemma. �

Lemma 3.15. Let W1,W2 ∈W(ε,M,H, 1). There is a constant C = C(ε, εW1 ,M,H)
such that ∫

W1∩W2

|ϕW1 − ϕW2 |2 ≤ Cd(W1,W2)1/3. (3.14)

Proof. Note that W1 ∩W2 is symmetric with respect to the yz-plane, and its inter-
sections with lines parallel to the x-axis are intervals. Since ϕW1 , ϕW2 are odd with
respect to the x-variable, as in the proof of Lemma 3.11 we get∫

W1∩W2

|ϕW1 − ϕW2|2 ≤
4

π2

∫
W1∩W2

|∇(ϕW1 − ϕW2)|2.

Now the assertion of the lemma follows from Lemma 3.14. �

The next lemma is analogous to Lemma 2.6 in [20].

Lemma 3.16. Let Wt ∈ W(ε,M,H, 1) for t in a neighborhood of 0, and suppose
that d(Wt,W0) → 0 as t → 0. Let K be a compact subset of W0. Then there exists
δ > 0 such that for all |t| < δ we have

K ⊂ Wt and ‖(ϕWt − ϕW0)1K‖∞ → 0 as t→ 0.

Proof. Since K is compact we have dist(K, ∂W0) = 2r for some r > 0. Since
d(Wt,W0) → 0 there exists δ > 0 such that for all |t| < δ we have K ⊂ Wt and
dist(K, ∂Wt) > r.
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r

y

B4(D)

B3(D)

B2(D)

B1(D)

r1 1

y0

D

(a)

x

y

z

B4

B3

B2

B1

(b)

Figure 4. (a) An example of a domain D in the class D1. (b) An
example of a domain W in the class W1.

Let |t| < δ and p ∈ K. Then B(p, r) ⊂ Wt ∩W0 and ϕWt , ϕW0 are harmonic in
B(p, r). Using this and Lemma 3.15 we get

|ϕWt(p)− ϕW0(p)| ≤
1

|B(p, r)|

∫
B(p,r)

|ϕWt − ϕW0|

≤ 1√
|B(p, r)|

(∫
B(p,r)

|ϕWt − ϕW0 |2
)1/2

≤ 1√
|B(p, r)|

(∫
Wt∩W0

|ϕWt − ϕW0 |2
)1/2

≤ C(ε, εW0 ,M,H)r−3/2d(Wt,W0)1/6,

which implies the assertion of the lemma. �

4. Monotonicity of the odd eigenfunction for some class of
piecewise smooth domains

This section is similar to Section 3 in [20]. The aim of this section is to show
Theorem 3.3 for domains in some special subclass W1 of the class W, defined below
(see Figure 4(b)). First we need to define the subclass D1 of the class D. In the
whole section we use notation (3.6).

Definition 4.1. Let y0 < 0, r1 ∈ (0, 1), T = r1 − y0, r1 = T1 < T2 < T3 < T .
The domain D ⊂ {(r, y) : r > 0, y < 0} belongs to the class of domains D1 iff its
boundary consists of the following 3 parts (see Figure 4(a)):

(i) the horizontal interval F (D) = {(r, y) : r ∈ [0, 1), y = 0};
(ii) the vertical interval R(D) = {(r, y) : r = 0, y ∈ (y0, 0]};

(iii) B(D), parametrized by a simple continuous curve (r(t), y(t)), t ∈ [0, T ],
satisfying the following conditions:
(a) (r(t), y(t)) = (t, y0) for t ∈ [0, T1],
(b) (r(t), y(t)) = (r1, y0 + t− T1) for t ∈ [T1, T2],
(c) y(t) = y0 + t − T1 for t ∈ [T2, T3], r(t) is a strictly increasing function

on [T2, T3],
(d) (r(t), y(t)) = (1, y0 + t− T1) for t ∈ [T3, T ],
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(e) r(t) is a C∞ function on [T1, T ].

We denote by B1(D), B2(D), B3(D), B4(D), the parts of B(D) corresponding to
t ∈ [T3, T ), t ∈ (T2, T3), t ∈ (T1, T2], t ∈ (0, T1] respectively.

Definition 4.2. The domain W belongs to the class of domains W1 iff W = W (D)
for some D ∈ D1. For W = W (D) ∈ W1 we denote Bi = {(x, y, z) ∈ R3 :
(
√
x2 + z2, y) ∈ Bi(D)}, i = 1, 2, 3, 4.

Note that for ε = min(r1, T − T3), H = −y0 + 1, the domain D ∈ D1 belongs to
the class D(ε, 1, H, 1) and W (D) ∈W(ε, 1, H, 1).

First we need the following general lemma.

Lemma 4.3. Let R > 0, (x̂, ŷ) be a rectangular coordinate system in R2 and
B(0, R) = {(x̂, ŷ) : x̂2 + ŷ2 < R2}. Let f ∈ C2,1(−R,R) be such that f(0) =
f ′(0) = 0 and Γ(f) = {(x, f(x)) : x ∈ (−R,R)} ∩ B(0, R) be the part of the graph
of f contained in B(0, R). Assume that g ∈ C2,1(B(0, R)) and ∇g(0, 0) = 0.

If ∂g
∂n

(x̂, ŷ) = 0 for all (x̂, ŷ) ∈ Γ(f), where ∂
∂n

is the normal derivative to Γ(f) at
point (x̂, ŷ) ∈ Γ(f), then

∂2g

∂x̂∂ŷ
(0, 0) = 0. (4.1)

Proof. By assumptions on f there exists r > 0 such that if x̂ ∈ (−r, r) then
(x̂, f(x̂)) ∈ B(0, R) so (x̂, f(x̂)) ∈ Γ(f). In the whole proof we will assume that
x̂ ∈ (−r, r).

The unit (upper) normal derivative to Γ(f) at (x̂, f(x̂)) ∈ Γ(f) is equal to

∂

∂n
=

1√
1 + (f ′(x̂))2

(
−f ′(x̂)

∂

∂x̂
+

∂

∂ŷ

)
.

The condition ∂g
∂n

(x̂, ŷ) = 0 gives

∂g

∂ŷ
(x̂, f(x̂)) = f ′(x̂)

∂g

∂x̂
(x̂, f(x̂)). (4.2)

By our assumptions on f we get f(x̂) = O(x̂2) and f ′(x̂) = O(|x̂|). Similarly,

assumptions on g give ∂g
∂x̂

(x̂, ŷ) = O(
√
x̂2 + ŷ2) so ∂g

∂x̂
(x̂, f(x̂)) = O(|x̂|). By (4.2) we

get
∂g

∂ŷ
(x̂, f(x̂)) = O(x̂2). (4.3)

By Taylor expansion for ∂g
∂ŷ

we get for (x̂, ŷ) ∈ B(0, R)

∂g

∂ŷ
(x̂, ŷ) =

∂g

∂ŷ
(0, 0) +

∂2g

∂x̂∂ŷ
(0, 0)x̂+

∂2g

∂ŷ2
(0, 0)ŷ + o(

√
x̂2 + ŷ2).

It follows that

∂g

∂ŷ
(x̂, f(x̂)) =

∂2g

∂x̂∂ŷ
(0, 0)x̂+

∂2g

∂ŷ2
(0, 0)f(x̂) + o(|x̂|).

By (4.3) and f(x̂) = O(x̂2) we get

∂2g

∂x̂∂ŷ
(0, 0)x̂ = o(|x̂|).

This implies (4.1). �
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Lemma 4.4. Let D ∈ D1 and W = W (D) ∈W1. We have ϕ ∈ C2,1(W ).

Proof. This is a standard result. The lemma follows from [29, formula (13.14)] and
[29, p. 63, lines 1–3], see also [32]. �

As an immediate conlusion of this lemma we obtain:

Corollary 4.5. Let D ∈ D1 and W = W (D) ∈ W1. Then ∂ϕ
∂x

, ∂ϕ
∂y

are bounded on

W .

Recall our notation W+ = {(x, y, z) ∈ W : x > 0}. Recall also that we may
assume that ψ > 0 on D.

Lemma 4.6. Let W = W (D) be an axisymmetric liquid domain. If ∂ψ
∂r
≥ 0 on D

and ∂ψ
∂y
≥ 0 on D then ∂ϕ

∂y
≥ 0 on W+ and ∂ϕ

∂x
≥ 0 on W .

Proof. In the cylindrical coordinates (r, θ, y) (see (1.7)) we haveW+ = {θ ∈ (−π/2, π/2)}.
Clearly,

∂ϕ

∂y
=
∂ψ

∂y
(r, y) cos θ.

Hence ∂ψ
∂y
≥ 0 on D implies ∂ϕ

∂y
≥ 0 on W+. Furthermore,

∂ϕ

∂x
=
∂ϕ

∂r
cos θ +

∂ϕ

∂θ

(− sin θ

r

)
.

Since ϕ = ψ(r, y) cos θ, we obtain

∂ϕ

∂x
=
∂ψ

∂r
(r, y) cos2 θ + ψ(r, y)

(
sin2 θ

r

)
. (4.4)

It follows that ψ ≥ 0 and ∂ψ
∂r
≥ 0 on D implies ∂ϕ

∂x
≥ 0 on W . �

Note that if D ∈ D1 and W = W (D) ∈ W1 then, in view of Lemma 4.4, (4.4)
holds on W , given that r =

√
x2 + z2 6= 0.

Lemma 4.7. Let D ∈ D1 and W = W (D) ∈ W1. Assume that (r, y) ∈ D. For
x = r and any n,m ∈ N we have

∂n+mϕ

∂xn∂ym
(x, y, 0) =

∂n+mψ

∂rn∂ym
(r, y).

Proof. This follows from the fact that for x = r we have ϕ(x, y, 0) = ψ(r, y). �

The proof of the following lemma uses some ideas from the proof of Proposition
3.2 in [20].

Lemma 4.8. Let D ∈ D1 and W = W (D) ∈ W1. If ∂ψ
∂r
≥ 0 on D and ∂ψ

∂y
≥ 0 on

D then ∂ψ
∂y
> 0 on B1(D) ∪B2(D) ∪B3(D) (see Figure 4(a)).

Proof. Since ∂ψ
∂y
≥ 0 on D we have ∂ψ

∂y
≥ 0 on B1(D) ∪ B2(D) ∪ B3(D) so we only

need to exclude the possibility that ∂ψ
∂y

= 0 at some point of B1(D)∪B2(D)∪B3(D).

On the contrary assume that ∂ψ
∂y

(r∗, y∗) = 0 at some point (r∗, y∗) ∈ B1(D) ∪
B2(D) ∪ B3(D). Since ∂ψ

∂n
(r∗, y∗) = 0, ∂ψ

∂y
(r∗, y∗) = 0 and since the normal vector is

not parallel to the y-axis, we have ∇ψ(r∗, y∗) = 0. Let ~T = (α, β) ∈ R2, α ≥ 0,
β > 0, α2 + β2 = 1 be the tangent unit vector to B(D) at point (r∗, y∗) and
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x̂

ŷ

(r∗, y∗)

~T

~N

Figure 5. New coordinate system (x̂, ŷ).

~N = (−β, α) ∈ R2 be the normal unit vector to B(D) at point (r∗, y∗) (see Figure 5).
Let us introduce a rectangular coordinate system (x̂, ŷ) with origin at (r∗, y∗) so that

x̂-axis is in the direction ~T and ŷ-axis is in the direction ~N . Note that in these new
coordinates B(D) in some ball centered in the origin is the graph of a C2,1 (even
C∞) function f such that f(0) = f ′(0) = 0.

By Lemma 4.4 ψ ∈ C2,1(D). Using this by [14, Lemma 6.37] there is a C2,1

extension of the function ψ to some ball centered at (r∗, y∗). We will denote this
extension by the same letter ψ.

Then the assumptions of Lemma 4.3 are satisfied which gives

∂2ψ

∂x̂∂ŷ
(r∗, y∗) = 0. (4.5)

Since ∇ψ(r∗, y∗) = 0 we get ∂ψ
∂x̂

(r∗, y∗) = 0.

Note that ∂
∂x̂

= α ∂
∂r

+β ∂
∂y

and define u = α∂ϕ
∂x

+β ∂ϕ
∂y

. By Lemma 4.7, u(x, y, 0) =
∂ψ
∂x̂

(r, y) (with r = x). Note that u is harmonic in W and by Lemma 4.6 and the
fact that α ≥ 0, β > 0 we have u ≥ 0 in W+. Finally, for x∗ = r∗,

u(x∗, y∗, 0) =
∂ψ

∂x̂
(r∗, y∗) = 0

and
∂u

∂n
(x∗, y∗, 0) =

∂2ψ

∂x̂∂ŷ
(r∗, y∗) = 0. (4.6)

At the point (x∗, y∗, 0) ∈ ∂W+ the domain W+ satisfies the inner ball condition.
Hence (4.6) gives contradiction with the Hopf’s lemma for the harmonic function
u. �

Lemma 4.9. Let u be a function which is harmonic in a bounded domain Ω ⊂ Rn

and continuous in Ω. Let Q1 ⊂ ∂Ω be such that for each p ∈ Q1 the boundary ∂Ω
has a tangent plane at p, the outer normal derivative ∂u

∂n
(p) exists and ∂u

∂n
(p) = 0.

Let Q2 = ∂Ω \Q1. If u ≥ 0 on Q2 then u ≥ 0 on Ω.

Proof. On the contrary assume that there exists p0 ∈ Ω such that u(p0) < 0. By the
maximum principle for u there exists p1 ∈ Q1 such that 0 > u(p1) = minp∈Ω u(p).
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By the normal derivative lemma (see e.g. [12] Lemma 2.33) ∂u
∂n

(p1) < 0 which gives
a contradiction. �

Let us denote R3
+ = {(x, y, z) : x > 0}, B+ = B ∩ R3

+, F+ = F ∩ R3
+, Bi+ =

Bi ∩R3
+, i = 1, 2, 3, 4.

Lemma 4.10. Let D ∈ D1 and W = W (D) ∈W1. If ∂ψ
∂y
≥ 0 on B2(D) then ∂ψ

∂y
≥ 0

on D and ∂ϕ
∂y
≥ 0 on W+.

Proof. We have
∂ϕ

∂y
=
∂ψ

∂y
(r, y) cos θ

on W , so by the assumption ∂ψ
∂y
≥ 0 on B2(D) we get ∂ϕ

∂y
≥ 0 on B2+.

Let us denote u = ∂ϕ
∂y

. Then u is harmonic in W+ and continuous in W+. We have

u ≥ 0 on B2+. We also have u = 0 on B4+. Since ϕ ≡ 0 on {(x, y, z) ∈ W : x = 0}
we get u ≡ 0 on {(x, y, z) ∈ W : x = 0}. Recall that ψ > 0 on D so ϕ ≥ 0 on
W+. We get u = ∂ϕ

∂y
= νϕ ≥ 0 on F+, so u ≥ 0 on F+. Note also that ∂u

∂n
= 0 on

B1+ ∪ B3+. Now the assertion of the lemma follows from Lemma 4.9 for Ω = W+

and Q1 = B1+ ∪B3+. �

Lemma 4.11. Let D ∈ D(ε,M,H, 1) and W = W (D) ∈ W(ε,M,H, 1). Assume

that u ∈ H1(W ), u is odd with respect to the x-axis, α =
(∫

F
u2
)1/2

> 0 and
|
∫
F
ϕWu| 6= α. Then we have ∫

W

|∇u|2 > νW

∫
F

u2.

Proof. Put β =
∫
F
ϕWu and g = u − βϕW . We have

∫
F
ϕWg = 0 and

∫
F
g2 =

α2 − β2 6= 0. We also have∫
W

|∇u|2 =

∫
W

|∇g|2 +

∫
W

|β∇ϕW |2 + 2

∫
W

∇g∇ϕW .

By Green’s formula one easily get
∫
W
∇g∇ϕW = 0 (cf. proof of Lemma 3.13). We

have
∫
W
|∇ϕW |2 = νW . Using (3.8) we obtain

∫
W
|∇g|2 > νW (α2−β2). This implies

the assertion of the lemma. �

Lemma 4.12. Let D ∈ D1 and W = W (D) ∈W1. If ∂ψ
∂y
≥ 0 on B2(D) then ∂ϕ

∂x
≥ 0

on W .

Proof. Since B2(D) is a graph of an increasing function y = g(r), ∂ψ
∂n

= 0 on B2(D)

and ∂ψ
∂y
≥ 0 on B2(D), we get ∂ψ

∂r
≥ 0 on B2(D). We also have ∂ψ

∂r
= 0 on B1(D) ∪

B3(D) so ∂ψ
∂r
≥ 0 on B1(D)∪B2(D)∪B3(D). By (4.4) ∂ϕ

∂x
≥ 0 on B1 ∪B2 ∪B3. Let

W− = {(x, y, z) ∈ W : x < 0} and W0 = {(x, y, z) ∈ W : x = 0}. Since ϕ < 0 on
W− and ϕ > 0 on W+ we get ∂ϕ

∂x
≥ 0 on W0.

Assume, contrary to the hypothesis of the lemma, that there exists (x∗, y∗, z∗) ∈ W
such that ∂ϕ

∂x
(x∗, y∗, z∗) < 0. Since ∂ϕ

∂x
(x, y, z) = ∂ϕ

∂x
(−x, y, z) we may assume that

(x∗, y∗, z∗) ∈ W+. Let V+ be the connected component of the set {(x, y, z) ∈ W :
∂ϕ
∂x

(x, y, z) < 0} containing (x∗, y∗, z∗). Since ∂ϕ
∂x
≥ 0 on B1 ∪B2 ∪B3 ∪W0 we have

V+ ⊂ W+.
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x
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z

F+

W+

V+

B4+

Figure 6. The set V+.

Let

F (V+) = Int{y=0}(∂V+ ∩ F ) and B4(V+) = Int{y=y0}(∂V+ ∩B4)

(see Figure 6). By Int{y=0}, Int{y=y0}, we denote the relative interior of a set in a
2-dimensional plane. Recall that −y0 is the depth of a liquid domain D ∈ D1, see
Definition 4.1.

Since ∂ϕ
∂x
≥ 0 on B1 ∪B2 ∪B3 ∪W0 and V+ is the connected component of the set

{(x, y, z) ∈ W : ∂ϕ
∂x

(x, y, z) < 0} we have ∂ϕ
∂x

= 0 on ∂V+ \ (F (V+) ∪ B4(V+)). We
also have

∂

∂n

(
∂ϕ

∂x

)
= 0 on B4(V+)

and
∂

∂n

(
∂ϕ

∂x

)
=

∂

∂y

(
∂ϕ

∂x

)
= νW

∂ϕ

∂x
on F (V+).

Let V− = {(x, y, z) ∈ W : (−x, y, z) ∈ V+}. Of course V− ⊂ W−. Let us define the
function u in the following way. We put u = ∂ϕ

∂x
on V+, u = −∂ϕ

∂x
on V− and u = 0

on W \ (V+ ∪ V−). We have u ∈ C(W ) and u is odd with respect to the x-axis. By
Green’s formula we also get∫

W

|∇u|2 = 2

∫
V+

|∇u|2

= 2

(∫
F (V+)

∂u

∂n
u+

∫
B4(V+)

∂u

∂n
u+

∫
∂V+\(F (V+)∪B4(V+))

∂u

∂n
u−

∫
V+

(∆u)u

)
= 2νW

∫
F (V+)

u2 = νW

∫
F

u2.

(4.7)

We have F (V+) 6= ∅ and
∫
F
u2 > 0 because otherwise u ≡ 0 on V+ which is im-

possible. Of course, there are points on Int{y=0}(∂W+ ∩ F ) for which ∂ϕ
∂x

> 0, so
F (V+) 6= Int{y=0}(∂W+∩F ). This implies that u and ϕW are not linearly dependent

on F , so |
∫
F
ϕWu| 6= |

∫
F
u2|1/2. By Lemma 4.11 we get∫

W

|∇u|2 > νW

∫
F

u2,

which contradicts (4.7). �
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Figure 7. Family of domains Ds.
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Figure 8. An auxiliary picture for Lemma 4.14.

Lemma 4.13. Let D ∈ D1 and W = W (D) ∈W1. Assume that there exists h > 0
such that W contains the cylinder {(x, y, z) : x2 + z2 < 1, 0 > y > −h}. Then there
exists C(h) such that for all (x, y, z) ∈ W such that y ≤ −h we have

|ϕ(x, y, z)| ≤ C(h).

Proof. Denote by W ′ the set {(x, y, z) ∈ W : −h/2 > y}. LetM be the supremum of
|ϕ| over W ′. By the maximum principle, the supremum is attained at the boundary
of W ′. By the normal derivative lemma (see [12, Lemma 2.33]), since ϕ is not
constant, it cannot attain its supremum or infimum at ∂W ′ ∩ {(x, y, z) : y < −h},
the part of the boundary where ϕ satisfies Neumann boundary condition. It follows
that M = |ϕ(p0)| for some p0 = (x0,−h/2, z0) ∈ ∂W ′.

By the Harnack inequality up to the Neumann boundary (see [4, Theorem 3.9]),
there is δ = δ(h) ∈ (0, h/2 ∧ 1) such that ϕ(p) ≥ M/2 for p ∈ B(p0, δ) ∩ W .
Furthermore, |B(p0, δ) ∩W | ≥ C1δ

3, where C1 is an absolute constant. It follows
that ∫

W

ϕ2 ≥
∫
B(p0,δ)∩W

M2

4
≥ C1δ

3M2

4
.

On the other hand, by Lemma 3.11, the left-hand side is bounded above by an
absolute constant. �

For a fixed domain D ∈ D1 we define the family of domains Ds, s ∈ [0, 1] such
that D1 = D and D0 is a rectangle (0, 1) × (y0, 0) (see Figure 7). Let y0, r1, r(t),
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y(t) be as in the definition of class D1 for the domain D. For y ∈ [y0, 0] put
g(y) = r(r1 + y0 − y). Note that D = {(r, y) : y ∈ (y0, 0), r ∈ (0, g(y))}. The
domain Ds ∈ D1 for s ∈ (0, 1) is defined by

Ds = {(r, y) : y ∈ (y0, 0), r ∈ (0, 1− s+ sg(y))}.
We denote 1− s+ sg(y) = gs(y), so that Ds = {(r, y) : y ∈ (y0, 0), r ∈ (0, gs(y))}.
Lemma 4.14. Let D ∈ D1. We define a rectangle R (see Figure 8) by

R = (r1/2, 3/2)× (yR1 , y
R
2 ),

where yR1 = y0 + (T2 − T1)/2, yR2 = −(T − T3)/2 and r1, y0, T1, T2, T3, T are taken
from the definition of class D1 for the domain D. Let Ds, s ∈ [0, 1], be the family
of domains constructed before the statement of this lemma for the domain D, and
let Ws = W (Ds). There exist a constant a = a(D) such that for all s ∈ [0, 1]

sup
p∈Ds∩R

∑
α+β=2

∣∣∣∣ ∂α+β

∂αr∂βy
ψDs(p)

∣∣∣∣ ≤ a. (4.8)

Moreover, there exist constants ε = ε(D), H = H(D) such that for all s, q ∈ [0, 1]

Ws ∈W(ε, 1, H, 1) and d(Ws,Wq)→ 0 as s→ q.

The key point in this lemma is that the constant a does not depend on s. The
proof of this result follows by elementary but tedious calculations.

Proof. We define a rectangle (see Figure 8) Q = (r1/4, 2) × (yQ1 , y
Q
2 ), where yQ1 =

y0 + (T2 − T1)/4 and yQ2 = −(T − T3)/4. For each s ∈ [0, 1] let us consider the
following change of variables:

ỹ = y, r̃ =
r

gs(y)
.

This change of variables is chosen so that the curve Q ∩ ∂Ds is straightened in
these new variables. In fact this transformation of variables changes Q ∩ ∂Ds to
{(r̃, ỹ) : ỹ ∈ (yQ1 , y

Q
2 ), r̃ = 1}.

Since gs(y) = gs(ỹ), g′s(y) = sg′(ỹ), and ∂
∂y

( r
gs(y)

) = − rsg′(y)
(gs(y))2

= − r̃sg′(ỹ)
gs(ỹ)

, we have

∂

∂r
=

1

gs(ỹ)

∂

∂r̃
,

∂

∂y
=

∂

∂ỹ
− r̃sg′(ỹ)

gs(ỹ)

∂

∂r̃
,

∂2

∂r2
=

1

(gs(ỹ))2

∂2

∂r̃2
,

∂2

∂y2
=

∂2

∂ỹ2
− 2r̃sg′(ỹ)

gs(ỹ)

∂2

∂ỹ∂r̃
+

(
r̃sg′(ỹ)

gs(ỹ)

)2
∂2

∂r̃2
+

2r̃s2(g′(ỹ))2 − r̃sg′′(ỹ)gs(ỹ)

(gs(ỹ))2

∂

∂r̃
.

The set Q ∩ Ds is transformed in the new variables to the set Ωs := {(r̃, ỹ) : ỹ ∈
(yQ1 , y

Q
2 ), r̃ ∈ (r1/(4gs(ỹ)), 1)}. Let us put ψs = ψDs . Since ψs satisfies (1.9) in Ds

for m = 1, we obtain that, in the new coordinates, ψs satisfies in Ωs:

1 + (r̃sg′(ỹ))2

(gs(ỹ))2

∂2ψs
∂r̃2

+
∂2ψs
∂ỹ2

− 2r̃sg′(ỹ)

gs(ỹ)

∂2ψs
∂ỹ∂r̃

+
1 + 2(r̃sg′(ỹ))2 − r̃2sg′′(ỹ)gs(ỹ)

r̃(gs(ỹ))2

∂ψs
∂r̃
− 1

(r̃gs(ỹ))2
ψs = 0.

(4.9)

Now we will verify the assumptions of [14, Lemma 6.29]. Note that 0 < r1 ≤ gs(ỹ) ≤
1, and 0 ≤ r̃sg′(ỹ)/gs(ỹ) ≤ C1(D) on Ωs. Hence, by an elementary calculation, there
exists a constant λ = λ(D) > 0 such that for all ξ, η ∈ R, s ∈ [0, 1], (r̃, ỹ) ∈ Ωs,
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we have (ξ − (r̃sg′(ỹ)/gs(ỹ))η)2 + (1/(gs(ỹ))2)η2 ≥ λ(ξ2 + η2). This means that for
all s ∈ [0, 1], the operator in (4.9) is strictly elliptic on Ωs with a constant λ which
does not depend on s.

Note that the unit outer normal derivative ∂
∂n

on Q ∩Ds equals

∂

∂n
=

1

(1 + (sg′(y))2)1/2

(
∂

∂r
− sg′(y)

∂

∂y

)
.

Since ψs satisfies ∂ψs

∂n
= 0 on Q ∩ ∂Ds we obtain that in the new coordinates ψs

satisfies
1 + (sg′(ỹ))2r̃

gs(ỹ)

∂ψs
∂r̃

(r̃, ỹ)− sg′(ỹ)
∂ψs
∂ỹ

(r̃, ỹ) = 0, (4.10)

for r̃ = 1 and ỹ ∈ (yQ1 , y
Q
2 ). Note that the coefficient at ∂ψs

∂r̃
in the above formula is

bounded from below by κ = 1, which does not depend on s.
We will use [14, Lemma 6.29] for α = 1, u = ψs, Ω = Ωs, T = {(r̃, ỹ) : r̃ = 1, ỹ ∈

(yQ1 , y
Q
2 )} and L the operator in (4.9). We have already checked that κ > 0 does not

depend on s and that the operator L on Ωs is strictly elliptic with a constant λ not
depending on s. It is also easy to check that absolute values of all the coefficients of
L on Ωs and the coefficients in (4.10) on T are bounded from above by a constant
not depending on s.

Note that R ∩ Ds is transformed in new variables to the set Us := {(r̃, ỹ) : ỹ ∈
(yR1 , y

R
2 ), r̃ ∈ (r1/(2gs(ỹ)), 1)}. It is easy to check that

sup
(r,y)∈Ds∩R

∑
α+β=2

∣∣∣∣ ∂α+β

∂αr∂βy
ψs(r, y)

∣∣∣∣ ≤ C(D) sup
(r̃,ỹ)∈Us

∑
α+β≤2

∣∣∣∣ ∂α+β

∂αr̃∂β ỹ
ψs(r̃, ỹ)

∣∣∣∣ .
Note that dist(Us, ∂Ωs \ T ) is bounded from below by a positive constant not de-
pending on s. By [14, Lemma 6.29] for u, Ω, T and L as above we get

sup
(r̃,ỹ)∈Us

∑
α+β≤2

∣∣∣∣ ∂α+β

∂αr̃∂β ỹ
ψs(r̃, ỹ)

∣∣∣∣ ≤ C(D) sup
(r̃,ỹ)∈Us

|ψs(r̃, ỹ)|.

We have sup(r̃,ỹ)∈Us
|ψs(r̃, ỹ)| = sup(r,y)∈Ds∩R |ψs(r, y)|. By Lemma 4.13 this is bounded

by a constant not depending on s. This implies (4.8).
It is clear that for ε = min(r1/2, T −T3), H = −y0 +1 we have Ws ∈W(ε, 1, H, 1)

for any s ∈ [0, 1]. The convergence d(Ws,Wq)→ 0 follows by Lemma 3.10. �

Lemma 4.15. Let D ∈ D1. Let Ds, Ws, s ∈ [0, 1], be as in Lemma 4.14 (see Figure
7). Fix q ∈ [0, 1]. Let R be the rectangle defined in Lemma 4.14 (see Figure 8).
Then we have

sup
p∈Ds∩Dq∩R

∣∣∣∣ ∂∂y (ψDs − ψDq)(p)

∣∣∣∣→ 0 as s→ q.

Proof. Denote ψs = ψDs . By Lemma 4.14, there are ε,H such thatWs ∈W(ε, 1, H, 1)
for all s ∈ [0, 1], and d(Ws,Wq)→ 0 as s→ q. Hence, by Lemma 3.14,∫

Ds∩Dq

r

∣∣∣∣∂ψs∂y
− ∂ψq

∂y

∣∣∣∣2 → 0 as s→ q. (4.11)

Again by Lemma 4.14, ∂ψs

∂y
is a Lipschitz function on Ds∩R with Lipschitz constant

a = a(D) not depending on s ∈ [0, 1]. Let δ ∈ (0, 1). It follows that for any
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p, p′ ∈ Ds ∩Dq ∩R with |p− p′| < δ we have∣∣∣∣∂ψs∂y
(p)− ∂ψq

∂y
(p)

∣∣∣∣2 ≤ (∣∣∣∣∂ψs∂y
(p′)− ∂ψq

∂y
(p′)

∣∣∣∣+ 2aδ

)2

≤ 8a2δ2 + 2

∣∣∣∣∂ψs∂y
(p′)− ∂ψq

∂y
(p′)

∣∣∣∣2 .
Furthermore, |B(p, δ) ∩Ds ∩Dq ∩R| ≥ C(D)δ2. Hence,∣∣∣∣∂ψs∂y

(p)− ∂ψq
∂y

(p)

∣∣∣∣2 ≤ 8a2δ2 +
2

C(D)δ2

∫
B(p,δ)∩Ds∩Dq∩R

∣∣∣∣∂ψs∂y
− ∂ψq

∂y

∣∣∣∣2 .
Since r ≥ r1/2 on R, we conclude that

sup
p∈Ds∩Dq∩R

∣∣∣∣∂ψs∂y
(p)− ∂ψq

∂y
(p)

∣∣∣∣2 ≤ 8a2δ2 +
4

C(D)δ2r1

∫
Ds∩Dq

r

∣∣∣∣∂ψs∂y
− ∂ψq

∂y

∣∣∣∣2 .
By (4.11), it follows that

lim sup
s→q

(
sup

p∈Ds∩Dq∩R

∣∣∣∣∂ψs∂y
(p)− ∂ψq

∂y
(p)

∣∣∣∣
)
≤ 2
√

2 aδ.

Since δ ∈ (0, 1) was arbitrary, the proof is complete. �

Lemma 4.16. Let h > 0 and W = {(x, y, z) : x2 + z2 < 1, 0 > y > −h} be a
cylinder. Then ∂ϕ

∂y
≥ 0 on W+. In particular ∂ψ

∂y
≥ 0 on D = {(x, y) : x ∈ (0, 1), y ∈

(−h, 0)}.
Proof. The result follows from explicit formulas for sloshing eigenfunctions in cylin-
ders, we have ψW (r, y) = c(h)J1(j′1,1r) cosh(j′1,1(y+ h)), where J1 is the Bessel func-
tion of the first kind, and j′1,1 is the first zero of its derivative (see e.g. [26, page
502] or [3, page 24]). �

The next result shows that the assertion of Theorem 3.3 holds for W ∈W1. The
proof of this result uses some ideas from Proposition 3.2 [20].

Proposition 4.17. Let D ∈ D1 and W = W (D) ∈ W1. Then we have ∂ϕ
∂x
≥ 0 on

W and ∂ϕ
∂y
≥ 0 on W+.

Proof. In view of Lemmas 4.10 and 4.12 it is enough to show that ∂ψ
∂y
≥ 0 on D. On

the contrary assume that there exists a domain D ∈ D1 and a point p ∈ D such
that ∂ψ

∂y
(p) < 0.

Let Ds, s ∈ [0, 1] be the family of domains constructed before the statement of
Lemma 4.14 for the above domain D = D1, and denote ψs = ψDs , ϕs = ϕDs . Let

q = inf

{
s ∈ [0, 1] :

∂ψs
∂y

(p) < 0 for some p ∈ Ds

}
.

We will first show that
∂ψq
∂y
≥ 0 on Dq. (4.12)

If q = 0 this follows from Lemma 4.16 (here we use the fact that we know that the
assertion of the proposition holds for cylinders).
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Now assume that q > 0. Then for all s < q we have ∂ψs

∂y
≥ 0 on Ds. Note that

for all s < q we have Dq ⊂ Ds. Let R be the rectangle defined in Lemma 4.14. By
Lemma 4.15 (for s < q) we have

sup
p∈Ds∩Dq∩R

∣∣∣∣ ∂∂y (ψs − ψq)(p)
∣∣∣∣ = sup

p∈Dq∩R

∣∣∣∣ ∂∂y (ψs − ψq)(p)
∣∣∣∣→ 0,

as s→ q−. This with the fact that for all s < q we have ∂ψs

∂y
≥ 0 on Ds implies that

∂ψq

∂y
≥ 0 on Dq ∩R. But B2(Dq) ⊂ Dq ∩R so Lemma 4.10 implies that ∂ψq

∂y
≥ 0 on

Dq.

We have shown (4.12). Note that by Lemma 4.12 we get ∂ϕq

∂x
≥ 0 on W (Dq). It

follows that ∂ψq

∂r
≥ 0 on Dq. Now we will show that there exist a point p0 ∈ B2(Dq)

such that
∂ψq
∂y

(p0) = 0.

By (4.12) we get that q < 1. By the definition of q we get that there exists a
decreasing sequence {sn}∞n=1 ⊂ [0, 1], sn → q, such that for all n ∈ N we have
(∂ψsn/∂y)(pn) < 0 for some pn ∈ Dsn .

By Lemma 4.10 we may assume that pn ∈ B2(Dsn). Note that Dsn ⊂ Dq. We

also may assume (after taking a subsequence if necessary) that pn → p0 ∈ B2(Dq).
Note also that pn ∈ R for any n = 0, 1, 2, . . .. We have∣∣∣∣∂ψsn∂y

(pn)− ∂ψq
∂y

(p0)

∣∣∣∣ ≤ ∣∣∣∣∂ψsn∂y
(pn)− ∂ψq

∂y
(pn)

∣∣∣∣+

∣∣∣∣∂ψq∂y
(pn)− ∂ψq

∂y
(p0)

∣∣∣∣
≤ sup

p∈Dsn∩R

∣∣∣∣∂ψsn∂y
(p)− ∂ψq

∂y
(p)

∣∣∣∣+

∣∣∣∣∂ψq∂y
(pn)− ∂ψq

∂y
(p0)

∣∣∣∣ . (4.13)

By Lemma 4.15 the first expression in (4.13) tends to 0 as n → ∞. The second
expression in (4.13) tends to 0 as n → ∞ because pn → p0, pn ∈ Dq ∩R (n =

0, 1, 2, . . .) and ∂ψq

∂y
is a Lipschitz function on Dq ∩R by Lemma 4.14.

Since ∂ψsn

∂y
(pn) < 0 it follows that ∂ψq

∂y
(p0) ≤ 0. We know that ∂ψq

∂y
≥ 0 and ∂ψq

∂r
≥ 0

on Dq, so ∂ψq

∂y
(p0) = 0. But p0 ∈ B2(Dq), a contradiction with Lemma 4.8. �

5. Monotonicity of the odd eigenfunction

In the previous section we proved monotonicity properties of ψ1,1 for a special
class of piecewise smooth domains W1. In this section we pass to the limit to obtain
the same result for class W. In the whole section we use notation (3.6).

proof of Theorem 3.3. Note that by scaling it is sufficient to show the assertion of
the theorem for D ∈ D such that r0 = 1.

Let us consider the following inequality:

ψ(r2, y2) ≥ ψ(r1, y1) for any (r1, y1), (r2, y2) ∈ D, r2 ≥ r1, y2 ≥ y1. (5.1)

Our first aim will be to justify (5.1) for all D ∈ D such that r0 = 1. To show this in-
equality we will use the following scheme. If we have a family of sets {Ds : s ∈ [0, s0]}
such that all these sets belong to D(ε,M,H, 1), Ws = W (Ds), dW(ε,M,H,1)(Ws,W0)→
0 as s→ 0 and (5.1) holds for all Ds where s ∈ (0, s0] then Lemma 3.16 guarantees
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that (5.1) holds also for D0. We will show that (5.1) holds for all D ∈ D such that
r0 = 1 in a number of steps.

Step 1. Note that Proposition 4.17 gives (5.1) for D ∈ D1.
Step 2. Let D2 be the class of domains satisfying all conditions for the class D1

except that the condition (e) is replaced by

(e’) t→ r(t) is a continuous function on [T1, T ].

We will show that (5.1) holds for D ∈ D2. Fix D ∈ D2 and let y0, r1 = T1, T2, T3,
T such as in Definition 4.1. Let ε = min(r1, T − T3, T2 − T1), H = −y0 + 1, so that
D ∈ D(ε, 1, H, 1), and let r(t), y(t), t ∈ [0, T ], be the parametrization of B(D).

For s > 0 let hs ∈ C∞(R) be such that hs ≥ 0, supp(hs) ⊂ (−s, s),
∫
R
hs = 1.

Put s0 = ε/2. For s ∈ (0, s0] let ys(t) = y(t) for t ∈ [0, T ], rs(t) = r(t) for
t ∈ [0, T1+ε/2]∪[T−ε/2, T ] and rs(t) =

∫ s
−s r(t−u)hs(u) du for t ∈ [T1+ε/2, T−ε/2].

Let D0 = D and for s ∈ (0, s0], let Ds be a domain defined like D but with (r(t), y(t))
replaced by (rs(t), ys(t)). Note that Ds ∈ D1 for s ∈ (0, s0] and Ds ∈ D(ε/2, 1, H, 1)
for s ∈ [0, s0]. We have ‖ys − y0‖∞ = 0 and ‖rs − r0‖∞ → 0 as s → 0 so Lemma
3.10 gives that dW(ε/2,1,H,1)(Ws,W0)→ 0 as s→ 0, where Ws = W (Ds). Hence Step
1 and Lemma 3.16 give that (5.1) holds for D0 = D ∈ D2.

Step 3. Let D3 be the class of domains satisfying all conditions for the class D1

except that condition (e) is deleted and condition (c) is replaced by

(c’) t→ y(t), t→ r(t) are strictly increasing continuous functions on [T2, T3].

It is clear that D2 ⊂ D3, and since we can replace (r(t), y(t)) by (r(y−1(y0 + t −
T1)), y0 + t−T1) for t ∈ [T2, T3] (this is just a reparametrization), we see that in fact
D3 = D2.

Step 4. Let D4 be the class of domains satisfying all conditions for the class D1

except that condition (e) is deleted and condition (c) is replaced by

(c”) t→ y(t), t→ r(t) are nondecreasing continuous functions on [T2, T3].

Fix D ∈ D4 and let y0, r1 = T1, T2, T3, T be such as in Definition 4.1. Let
ε = min(r1, T − T3), H = −y0 + 1, so that D ∈ D(ε, 1, H, 1), and let r(t), y(t),
t ∈ [0, T ], be the parametrization of B(D).

For s ∈ [0, 1) define rs(t) = r(t) and ys(t) = y(t) for t ∈ [0, T2] ∪ [T3, T ], and let

rs(t) = (1− s)r(t) + s

(
r1 +

t− T2

T3 − T2

(1− r1)

)
,

ys(t) = (1− s)y(t) + s(y0 + t− T1)

for t ∈ [T2, T3]. Let Ds be the corresponding domain. Note that Ds ∈ D3 for
s ∈ (0, s0] and Ds ∈ D(ε, 1, H, 1) for s ∈ [0, s0]. We have ‖ys − y0‖∞ → 0 and
‖rs − r0‖∞ → 0 as s → 0 so Lemma 3.10 gives that dW(ε,1,H,1)(Ws,W0) → 0 as
s → 0, where Ws = W (Ds). Hence Step 2, Step 3 and Lemma 3.16 give that (5.1)
holds for D0 = D ∈ D4.

Step 5. Let D5 be the class of domains satisfying all conditions for the class D1

except that conditions (b) and (e) are deleted, T2 = T1 and condition (c) is replaced
by

(c’’’) t→ y(t), t→ r(t) are nondecreasing continuous functions on [T1, T3].

Fix D ∈ D5 and let y0, r1 = T1 = T2, T3, T be such as in Definition 4.1. Let
ε = min(r1, T − T3), H = −y0 + 1, so that D ∈ D(ε, 1, H, 1), and let r(t), y(t),
t ∈ [0, T ], be the parametrization of B(D).
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Let s ∈ [0, 1/2] and T2(s) = (1−s)T1+sT3. We define rs(t) = r(t) and ys(t) = y(t)
for t ∈ [0, T1] ∪ [T3, T ], rs(t) = r1 and ys(t) = y0 + t− T1 for t ∈ [T1, T2(s)], and let

rs(t) = r

(
T3 −

T3 − t
1− s

)
, ys(t) = (1− s)y

(
T3 −

T3 − t
1− s

)
+ sy(T3)

for t ∈ [T2(s), T3]. The corresponding domains Ds are in D4 for s ∈ (0, 1/2], and
Ds ∈ D(ε, 1, H, 1) for s ∈ [0, 1/2]. Since r(t) and y(t) are continuous, we have
‖ys− y0‖∞ → 0 and ‖rs− r0‖∞ → 0 as s→ 0. Again, Lemma 3.10 and Lemma 3.16
together with Step 4 give that (5.1) holds for D0 = D ∈ D5.

Step 6. Let D6 be the class of all domains from the class D such that r0 = 1.
Fix D ∈ D6 and let ε, M , H, T , y0, r(t), y(t) be such as in Definition 3.1. Let
s ∈ [0, ε/2]. We define r(t) = t and y(t) = y0 for t ∈ [0, s], r(t) = 1 and y(t) = t−T
for t ∈ [T − s, T ], and

rs(t) = s+ (1− s)r
(
t− s
T − 2s

T

)
, ys(t) = −s+

−y0 − s
−y0

y

(
t− s
T − 2s

T

)
for t ∈ [s, T − s]. Let Ds correspond to rs(t) and ys(t) for s ∈ [0, ε/2]. Observe
that Ds ∈ D(ε, 2M,H, 1) for s ∈ [0, ε/2] and Ds ∈ D5 for s ∈ (0, ε/2]. Furthermore,
‖ys − y0‖∞ → 0 and ‖rs − r0‖∞ → 0 as s → 0, so Lemma 3.10, Lemma 3.16 and
Step 5 give (5.1) for D0 = D ∈ D6.

Step 7. Step 6 shows (5.1) for all D ∈ D such that r0 = 1. This implies
the assertion of Theorem 3.3 but with weak inequalities instead of strict ones. By
Lemma 4.6 this gives ∂ϕ

∂x
≥ 0 on W and ∂ϕ

∂y
≥ 0 on W+. However ∂ϕ

∂x
, ∂ϕ
∂y

are harmonic

functions in W which implies ∂ϕ
∂x
> 0 on W and ∂ϕ

∂y
> 0 on W+. Of course, this gives

strict inequalities in Theorem 3.3. �

proof of Theorem 1.1 (ii), (iii). Elementary geometric considerations (we omit the
details here) give that any axisymmetric, convex, bounded liquid domain satisfying
the John condition belongs to the class of domains D. Hence Theorem 1.1 (ii) follows
from Theorem 3.3. The inequalities in Theorem 1.1 (iii) follows from Theorem 1.1
(ii) by Lemma 4.6. The last sentence in Theorem 1.1 (iii) is an easy corollary of
Theorem 1.1 (i). �

proof of Proposition 1.2. Let F = {(x, y, z) : x2 + z2 < R2, y = 0} for some R > 0.
Let θ0 ∈ (π/2, π) denote the angle between the free surface F (D) and the rigid wall
B(D). It was proved in [29] (formula (13.3)) that (see also [21])

ψ(r, 0) = ψ(R, 0)(1− ν(R− r) cot θ0) + o(R− r) as r → R−.

Let us recall that we may assume that ψ > 0 on D. It is a standard result that ψ
is continuous on D and ψ(0, 0) = 0. Of course ϕ attains maximum on F so ψ must

attain maximum on F (D).
If ψ(R, 0) = 0 then clearly ψ(r, 0) does not attain its maximum at r = R. If

ψ(R, 0) > 0 then ∂ψ
∂r

(R, 0) = ν cot θ0ψ(R, 0) < 0 and therefore ψ(R, 0) cannot be
the maximum of ψ(r, 0).

It follows that ψ(r, 0) attains its maximum inside the interval (0, R) and ∂ψ
∂r

(r, 0)
changes the sign on (0, R). Hence ψ(r, y) has its maximum in the interior of F (D)
and ∂ψ

∂r
(r, y) changes the sign in D. �
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