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Abstract. For a sufficiently regular open bounded set D ⊂ R2 let us consider the
equation (−∆)1/2ϕ(x) = 1, x ∈ D with the Dirichlet exterior condition ϕ(x) = 0,
x ∈ Dc. Its solution, ϕ(x) is the expected value of the first exit time from D of the
Cauchy process in R2 starting from x. We prove that if D ⊂ R2 is a convex bounded
domain then ϕ is concave on D. To show it we study the Hessian matrix of the harmonic
extension of ϕ. The key idea of the proof is based on a deep result of Hans Lewy
concerning determinants of Hessian matrices of harmonic functions.

1. Introduction

Let D ⊂ R2 be an open bounded set which satisfies a uniform exterior cone condition on
∂D and let us consider the following Dirichlet problem for the square root of the Laplacian

(−∆)1/2ϕ(x) = 1, x ∈ D, (1)

ϕ(x) = 0, x ∈ Dc, (2)

where we understand that ϕ is a continuous function on R2. (−∆)1/2 in R2 is given by

(−∆)1/2f(x) = 1
2π limε→0+

∫
|y−x|>ε

f(x)−f(y)
|y−x|3 dy, whenever the limit exists.

It is well known that (1-2) has a unique solution, which has a natural probabilistic
interpretation. Let Xt be the Cauchy process in R2 (that is a symmetric α-stable process

in R2 with α = 1) with a transition density pt(x) = 1
2π t(t

2 + |x|2)−3/2 and let τD = inf{t ≥
0 : Xt /∈ D} be the first exit time of Xt from D. Then ϕ(x) = Ex(τD), x ∈ R2, where Ex

is the expected value of the process Xt starting from x, [18]. The function Ex(τD) plays
an important role in the potential theory of symmetric stable processes (see e.g. [5], [4],
[11]).

About 10 years ago R. Bañuelos posed a problem of p-concavity of Ex(τD) for symmetric
α-stable processes. The problem was inspired by a beautiful result of Ch. Borell about
1/2-concavity of Ex(τD) for the Brownian motion.

The main result of this paper is the following theorem. It solves the problem posed by
R. Bañuelos for the Cauchy process in R2.

Theorem 1.1. If D ⊂ R2 is a bounded convex domain then the solution of (1-2) is concave
on D.

To the best of author’s knowledge this is the first result concerning concavity of solu-
tions of equations for fractional Laplacians on general convex domains. There is a recent
interesting paper of R. Bañuelos and R. D. DeBlassie [1] in which the first eigenfunction of
the Dirichlet eigenvalue problem for fractional Laplacians on Lipschitz domains is studied
but in that paper superharmonicity and not concavity of the first eigenfunction is proved
(similar results were also obtained by M. Kaßmann and L. Silvestre [22]). In [3] concavity
of the first eigenfunction for fractional Laplacians was studied but [3] concerns only boxes
and not general convex domains.
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Now let D ⊂ Rd, d ≥ 1 be an open bounded set which satisfies a uniform exterior cone
condition on ∂D, α ∈ (0, 2] and let us consider a more general Dirichlet problem for the
fractional Laplacian

(−∆)α/2ϕ(x) = 1, x ∈ D, (3)

ϕ(x) = 0, x ∈ Dc, (4)

where we understand that ϕ is a continuous function on Rd. (−∆)α/2 in Rd for α ∈ (0, 2)

is given by (−∆)α/2f(x) = Ad,−α limε→0+
∫
|y−x|>ε

f(x)−f(y)
|y−x|d+α dy, whenever the limit exists,

Ad,−α = 2αΓ((d+α)/2)/(πd/2|Γ(−α/2)|). For α = 2 the operator (−∆)α/2 is simply −∆.
It is well known that (3-4) has a unique solution. It is the expected value of the first

exit time from D of the symmetric α-stable process in Rd.

Remark 1.2. For α = 2 i.e. for the Laplacian, it is well known that if D ⊂ Rd is a bounded
convex domain then the solution of (3-4) is 1/2-concave, that is

√
ϕ is concave. This was

proved for d = 2 in 1969 by L. Makar-Limanov [32]. For d ≥ 3 it was proved in 1983 by
Ch. Borell [8] and independently by A. Kennington [23], [24] using ideas of N. Korevaar
[25].

Remark 1.3. Let α ∈ (0, 2] and ϕ be a solution of (3-4) for D = B(0, r) ⊂ Rd, d ≥ 1 a
ball with centre 0 and radius r > 0. Then ϕ is given by an explicit formula [18] (see also

[21], [17]) ϕ(x) = CB(r2− |x|2)α/2, x ∈ B(0, r), where CB = Γ(d/2)(2αΓ(1 +α/2)Γ(d/2 +
α/2))−1. In particular ϕ is concave on B(0, r).

Remark 1.4. For any α ∈ (1, 2) and d ≥ 2 there exists a bounded convex domain D ⊂ Rd
(a sufficiently narrow bounded cone) such that ϕ is not concave on D. The justification
of this statement is in Section 7. In particular, this implies that the assertion of Theorem
1.1 is not true for the problem (3-4) for α ∈ (1, 2).

For general α ∈ (0, 2) and d ≥ 2 we have the following regularity result.

Theorem 1.5. Let α ∈ (0, 2), d ≥ 2 and let ϕ be a solution of (3-4). If D ⊂ Rd is a
bounded convex domain then we have

a) for any x0 ∈ ∂D, x ∈ D, λ ∈ (0, 1)

ϕ(λx+ (1− λ)x0) ≥ λαϕ(x),

b) for any x, y ∈ D, λ ∈ (0, 1)

ϕ(λx+ (1− λ)y) ≥ max (λαϕ(x), (1− λ)αϕ(y)) .

The proof of this theorem is in Section 7. It is based on one tricky observation and
is much easier than the proof of Theorem 1.1. Clearly, Theorem 1.5 does not imply p-
concavity of ϕ for any p ∈ [−∞, 1]. Some conjectures concerning p-concavity of solutions
of (3-4) are presented in Section 7.

Below we present the idea of the proof of Theorem 1.1. The proof is in the spirit of
papers by L. Caffarelli, A. Friedman [9] and N. Korevaar, J. Lewis [26] in which they study
geometric properties of solutions of some PDEs using the constant rank theorem and the
method of continuity. In the proof of Theorem 1.1 the role of the constant rank theorem
is played by the following result of Hans Lewy from 1968.

Theorem 1.6 (Hans Lewy, [31]). Let u(x1, x2, x3) be real and harmonic in a domain Ω
of R3 and let H(u) denote the determinant of the Hessian matrix of u. Suppose H(u)
vanishes at a point x0 ∈ Ω without vanishing identically in Ω. Then H(u) assumes both
positive and negative values near x0.

The use of this result is the key element of the proof of Theorem 1.1. S. Gleason and
T. Wolff [20] generalized Theorem 1.6 to higher dimensions. Their result gives some hope
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that it is also possible to extend Theorem 1.1 to higher dimensions, see Conjecture 7.1 in
Section 7.

Let us come back to presenting the idea of the proof of Theorem 1.1. We show the
theorem for a sufficiently smooth bounded convex domain D ⊂ B(0, 1) ⊂ R2, which
boundary has a strictly positive curvature (the result for an arbitrary bounded convex
domain follows by an approximation argument and scaling). Let us consider the harmonic
extension u of ϕ. Namely, let

K(x) = CK
x3

(x2
1 + x2

2 + x2
3)3/2

, x ∈ R3
+, (5)

where CK = 1/(2π), R3
+ = {x = (x1, x2, x3) ∈ R3 : x3 > 0}. Put u(x1, x2, 0) = ϕ(x1, x2),

(x1, x2) ∈ R2 and

u(x1, x2, x3) =

∫
D
K(x1 − y1, x2 − y2, x3)ϕ(y1, y2) dy1 dy2, (x1, x2, x3) ∈ R3

+. (6)

Note that K(x1−y1, x2−y2, x3) is the Poisson kernel of R3
+ for points x = (x1, x2, x3) ∈ R3

+

and (y1, y2, 0) ∈ ∂R3
+. By fi we denote ∂f

∂xi
, by fij we denote ∂2f

∂xi∂xj
. It is well known that

u3(x1, x2, 0) = −(−∆)1/2ϕ(x1, x2), (x1, x2) ∈ D, so u satisfies

∆u(x) = 0, x ∈ R3
+, (7)

u3(x) = −1, x ∈ D × {0}, (8)

u(x) = 0, x ∈ Dc × {0}, (9)

where ∆u = u11 + u22 + u33.
The idea of studying equations for fractional Laplacians via harmonic extensions is well

known. It was used for the first time by F. Spitzer in [35] and then by many other authors
e.g. by S. A. Molchanov, E. Ostrovskii [34], R. D. DeBlassie [14], P. Mendez-Hernandez
[33], R. Bañuelos, T. Kulczycki [2], A. El Hajj, H. Ibrahim, R. Monneau [16], L. Caffarelli,
L. Silvestre [10].

In the next step of the proof we extend u to R3
− = {x = (x1, x2, x3) ∈ R3 : x3 < 0} by

putting

u(x1, x2, x3) = u(x1, x2,−x3)− 2x3, (x1, x2, x3) ∈ R3
−. (10)

Note that u is continuous on R3 and for (x1, x2) ∈ D it satisfies

u3−(x1, x2, 0) = lim
h→0−

u(x1, x2, h)− u(x1, x2, 0)

h

= lim
h→0−

u(x1, x2,−h)− 2h− u(x1, x2, 0)

h
= −1.

By standard arguments it follows that u is harmonic in R3
+∪R3

−∪ (D×{0}) = R3 \ (Dc×
{0}).

Let Hess(u) be the Hessian matrix of u and H(u) = det(Hess(u)). The general strategy
of the proof is as follows:

1. We show that H(u)(x) > 0 for every x ∈ R3 \ (Dc × {0}).
2. We show that for x = (x1, x2, 0) ∈ D × {0} the Hessian matrix has the following

form

Hess(u)(x) =

 u11(x) u12(x) 0
u12(x) u22(x) 0

0 0 u33(x)

 =

 ϕ11(x1, x2) ϕ12(x1, x2) 0
ϕ12(x1, x2) ϕ22(x1, x2) 0

0 0 u33(x)


and u33(x) > 0.

Since ∆u(x) = 0, the two assertions above immediately imply that ϕ11(x1, x2) < 0,
ϕ22(x1, x2) < 0 for (x1, x2) ∈ D, so ϕ is strictly concave on D.
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Almost entire proof is the justification of the first assertion. This is done by the con-
tinuity method i.e. by deforming the domain D to the unit disk B(0, 1). The continuity
method requires the maximum principle for H(u) (Lewy’s theorem), estimates of uij near
∂D × {0} (see Sections 3, 4) and the result for the unit disk (see Section 5). Roughly
speaking, estimates of uij justify that zeroes of H(u) do not ”emerge” from ∂D × {0}
along the deformation. Lewy’s theorem implies that zeroes of H(u) may not appear in
compact subdomains of R3 \ (Dc × {0}) along the deformation.

Below, we briefly present main steps in the continuity method. It may be easily shown
thatH(u)(x)→ 0 when x→ x0 ∈ int(Dc)×{0}. This fact causes some technical difficulties
in the proof. To deal with this problem we add an auxiliary harmonic function to u.
Namely, for any ε ≥ 0 we consider v(ε,D)(x) = u(D)(x) +ε(−x2

1/2−x2
2/2 +x2

3) (where u(D)

denotes u corresponding to D). We consider the family of domains {D(t)}t∈[0,1] such that
D(0) = D, D(1) = B(0, 1), all D(t) are smooth bounded convex domains which boundaries
have strictly positive curvature and ∂D(t)→ ∂D(s) when t→ s in the appropriate sense.
For large M we put (see Figure 8)

Ω(M,D(t)) = {x ∈ R3 : x2
1 + x2

2 < M2, x3 ∈ (−M,M)} \ ((D(t))c × {0}).

We fix large M and a sufficiently small ε > 0 (ε ∈ (0, C(M)]). We define

T = {t ∈ [0, 1] : H(v(ε,D(t)))(x) > 0 for all x ∈ Ω(M,D(t))}.

Next, one can show that 1 ∈ T (the result for the unit disk). Then we prove that T is

closed, which follows from Lewy’s theorem applied to v(ε,D(t)). Next, we prove that T is
open (relatively in [0, 1]), which follows from a fact that for any fixed large M and any fixed

ε ∈ (0, C(M)] and all t ∈ [0, 1] we have H(v(ε,D(t)))(x) > c > 0 near ∂Ω(M,D(t)), where
c does not depend on t (in the proof of this estimate the results from Section 4 are used).
This implies that T = [0, 1]. By taking ε→ 0 (and using again Lewy’s theorem) we obtain

that H(u(D))(x) > 0 for x ∈ Ω(M,D). Passing M → ∞ we obtain that H(u(D))(x) > 0
for all R3 \ (Dc × {0}).

The paper is organized as follows. In Section 2 we present notation and collect some
known facts needed in the rest of the paper. Sections 3 and 4 are the most technical parts.

In Section 3 we estimate ϕ
(D)
ij near ∂D. This is done by using an explicit formula for

the Poisson kernel PB(x, y) for a ball B corresponding to (−∆)1/2. Note that due to the

nonlocality of (−∆)1/2 the corresponding harmonic measure PB(x, y) dy is concentrated

not on ∂B but on Bc. The results for ϕ
(D)
ij are obtained by estimating integrals involving

the Poisson kernel and its derivatives over different subdomains of D. This method is
very technical. Nevertheless this is a standard method for boundary value problems for
fractional Laplacians used by many authors e.g. K. Bogdan, Z.-Q. Chen, R. Song. It

seems that the reason the estimates of ϕ
(D)
i , ϕ

(D)
ij are quite long and technical is just the

nonlocality of the equation (−∆)1/2ϕ = 1. The results from Section 3 are used only in

Section 4, where estimates of u
(D)
ij near ∂D × {0} are obtained. These estimates are also

quite technical. The reason for this is that u
(D)
ij are singular near ∂D × {0} and their

behaviour is quite complicated. For example, in an appropriate coordinate system (see

Figure 4) in a neighborhood of 0 ∈ ∂D×{0} we have u
(D)
11 (x) ≈ (dist(x, ∂D×{0}))−3/2 for

some points, u
(D)
11 (x) vanishes for some other points and u

(D)
11 (x) ≈ −(dist(x, ∂D×{0}))−3/2

for some other points. In order to control all 6 different u
(D)
ij and ultimately control

H(v(ε,D)) we have to consider many cases. The results from Section 4 are used only in the
proofs of Proposition 6.2 and Lemma 5.2. Let us point out, that the only aim of Section
3 and 4 is to obtain control of H(v(ε,D)) and H(u(D)) near ∂D × {0}.
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In Section 5 we prove that H(u(B(0,1)))(x) > 0 for x ∈ R3 \ (Bc(0, 1)× {0}). u(B(0,1)) is

given by an explixit formula but it seems hard to show H(u(B(0,1)))(x) > 0 using directly
this explicit formula. Instead, the proof is based on an auxiliary function and Lewy’s
theorem.

The most important part of the paper is Section 6, which contains the proof of the main
theorem. In particular, it contains the proof of positivity of H(u(D)) via the continuity
method, which was briefly described above. It is worth to emphasize that all the derivative
estimates obtained in Sections 3 and 4 are used in Section 6 only in the proof of Proposition
6.2. The results from Section 5 are used only in the proof of Proposition 6.5. Corollary
6.6, in which estimates of H(v(ε,D)) near ∂Ω(M,D) (see Figure 8) and H(v(ε,B(0,1))) in
Ω(M,B(0, 1)) are formulated, is a direct consequence of Propositions 6.2, 6.5. Let us point
out that all the results from Sections 3, 4, 5 are invoked in the proof of the main theorem
only through Corollary 6.6.

In Section 7 some extensions and conjectures are presented.

2. Preliminaries

For x ∈ Rd and r > 0 we let B(x, r) = {y ∈ Rd : |y − x| < r}. By a ∧ b we denote
min(a, b) and by a ∨ b we denote max(a, b) for a, b ∈ R. For x ∈ Rd, D ⊂ Rd we put

δD(x) = dist(x, ∂D). For any ψ : Rd → R we denote ψi(x) = ∂ψ
∂xi

(x), ψij(x) = ∂2ψ
∂xi∂xj

(x),

i, j ∈ {1, . . . , d}. We put R3
+ = {(x1, x2, x3) ∈ R3 : x3 > 0}, R3

− = {(x1, x2, x3) ∈ R3 :
x3 < 0}. The definition of a uniform exterior cone condition may be found e.g. in [19,
page 195].

Let us define a subclass of bounded, convex C2,1 domains in R2 with strictly positive
curvature, which will be suitable for our purposes.

Definition 2.1. Let C1 > 0, R1 > 0, κ2 ≥ κ1 > 0 and let us fix a Cartesian coordinate
system CS in R2. We say that a domain D ⊂ R2 belongs to the class F (C1, R1, κ1, κ2)
when

1. D is convex. In CS coordinates we have

{(y1, y2) : y2
1 + y2

2 < R2
1} ⊂ D ⊂ {(y1, y2) : y2

1 + y2
2 < 1}.

2. For any x ∈ ∂D there exist a Cartesian coordinate system CSx with origin at x
obtained by translation and rotation of CS, there exist R > 0, f : [−R,R] → [0,∞) (R,
f depend on x), such that f ∈ C2,1[−R,R], f(0) = 0, f ′(0) = 0 and in CSx coordinates

{(y1, y2) : y2 ∈ [−R,R], y1 ∈ (f(y2), R]} = D ∩ {(y1, y2) : y1 ∈ [−R,R], y2 ∈ [−R,R]}.
3. For any y ∈ ∂D we have

κ1 ≤ κ(y) ≤ κ2,

where κ(y) denotes the curvature of ∂D at y.
4. For any y, z ∈ ∂D we have

|κ(y)− κ(z)| ≤ C1|y − z|.
For brevity, we will often use notation Λ = {C1, R1, κ1, κ2} and write D ∈ F (Λ).

Let C1 > 0, R1 > 0, κ2 ≥ κ1 > 0 and put Λ = {C1, R1, κ1, κ2}. Let D ∈ F (Λ). For

any y ∈ ∂D by ~n(y) we denote the normal inner unit vector at y and by ~T (y) we denote
the tangent unit vector at y which agrees with negative (clockwise) orientation of ∂D. We
put e1 = (1, 0), e2 = (0, 1).

It may be easily shown that there exists R̃ = R̃(Λ) such that for any y ∈ D, δD(y) ≤ R̃
there exists a unique y∗ ∈ ∂D such that |y−y∗| = δD(y). For any y ∈ D such that δD(y) ≤
R̃ we define ~n(y) = ~n(y∗), ~T (y) = ~T (y∗). For any ψ ∈ C2(D), y ∈ D, v1(y), v2(y) ∈ R
and ~v(y) = v1(y)e1 +v2(y)e2 we put ∂ψ

∂~v (y) = v1(y)ψ1(y)+v2(y)ψ2(y), (recall that ψi(y) =
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y1

y2

r

D
.

Figure 1

∂ψ
∂xi

(y)). Similarly, for any w1(y), w2(y) ∈ R and ~w(y) = w1(y)e1 + w2(y)e2 we put
∂2ψ
∂~v∂ ~w (y) = v1(y)w1(y)ψ11(y) + v2(y)w2(y)ψ22(y) + (v1(y)w2(y) + v2(y)w1(y))ψ12(y).

Lemma 2.2. Let C1 > 0, R1 > 0, κ2 ≥ κ1 > 0 put Λ = {C1, R1, κ1, κ2} and let us fix
a Cartesian coordinate system CS in R2. Fix D ∈ F (Λ) and x0 ∈ ∂D. Choose a new
Cartesian coordinate system CSx0 with origin at x0 obtained by translation and rotation

of CS such that the positive coordinate halflines y1, y2 are in the directions ~n(x0), ~T (x0)
respectively.

From now on all points and vectors are in this new coordinate system CSx0, in particular

~n(0, 0) = (1, 0) = e1, ~T (0, 0) = (0, 1) = e2. For any y ∈ ∂D define α(y) ∈ (−π, π] such

that ~T (y) = sinα(y)e1 + cosα(y)e2 (this is an angle between e2 and ~T (y)). For any

y ∈ D with δD(y) < R̃ define α(y) = α(y∗), where y∗ ∈ ∂D is a unique point such that
|y − y∗| = δD(y).

There exists r0 = r0(Λ) ≤ R̃ ∧ (1/2), c1 = c1(Λ), c2 = c2(Λ), c3 = c3(Λ), c4 = c4(Λ),
c5 = c5(Λ), c6 = c6(Λ), f : [−r0, r0] → [0,∞) such that f ∈ C2,1[−r0, r0], f(0) = 0,
f ′(0) = 0, c4r0 ≤ 1/4 and for any fixed r ∈ (0, r0] we have (see Figure 1)

1. {(y1, y2) : (y1 − r)2 + y2
2 < r2} ⊂ D,

W := {(y1, y2) : y2 ∈ [−r, r], y1 ∈ (f(y2), r]} = D ∩ {(y1, y2) : y1 ∈ [−r, r], y2 ∈ [−r, r]}.
2. For any y ∈W we have α(y) ∈ [−π/4, π/4] and

c1|y2| ≤ | sinα(y)| ≤ c2|y2|,
~T (y) = sinα(y)e1 + cosα(y)e2, (11)

~n(y) = cosα(y)e1 − sinα(y)e2. (12)

3. For any y2 ∈ [−r, r] we have

c3y
2
2 ≤ f(y2) ≤ c4y

2
2.

4. For any y ∈ W we have e1 = cosα(y)~n(y) + sinα(y)~T (y), e2 = − sinα(y)~n(y) +

cosα(y)~T (y). For any ψ ∈ C2(D) and y ∈W we have

∂ψ

∂ ~T
(y) = sinα(y)ψ1(y) + cosα(y)ψ2(y), (13)

∂ψ

∂~n
(y) = cosα(y)ψ1(y)− sinα(y)ψ2(y), (14)
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ψ1(y) = cosα(y)
∂ψ

∂~n
(y) + sinα(y)

∂ψ

∂ ~T
(y),

ψ2(y) = − sinα(y)
∂ψ

∂~n
(y) + cosα(y)

∂ψ

∂ ~T
(y),

ψ11(y) = cos2 α(y)
∂2ψ

∂~n2
(y) + sin2 α(y)

∂2ψ

∂ ~T 2
(y) + 2 sinα(y) cosα(y)

∂2ψ

∂~n∂ ~T
(y),

ψ22(y) = cos2 α(y)
∂2ψ

∂ ~T 2
(y) + sin2 α(y)

∂2ψ

∂~n2
(y)− 2 sinα(y) cosα(y)

∂2ψ

∂~n∂ ~T
(y),

ψ12(y) = (cos2 α(y)− sin2 α(y))
∂2ψ

∂~n∂ ~T
(y)− sinα(y) cosα(y)

(
∂2ψ

∂~n2
(y)− ∂2ψ

∂ ~T 2
(y)

)
.

5. For any y ∈ {(y1, y2) ∈W : y2 > 0} we have

c5(f−1(y1)− y2)f−1(y1) ≤ δD(y) ≤ c6(f−1(y1)− y2)f−1(y1),

where f−1 : [0, f(r)]→ [0, r].

This lemma follows by elementary geometry and its proof is omitted.

Lemma 2.3. Let C1 > 0, R1 > 0, κ2 ≥ κ1 > 0 and put Λ = {C1, R1, κ1, κ2}. There exists
a constant c = c(Λ) such that for any D ∈ F (Λ) we have∫

D
δ
−1/2
D (x) dx ≤ c. (15)

Proof. By Definition 2.1 we have B(0, R1) ⊂ D ⊂ B(0, 1). Let x0 ∈ ∂D. By convexity of
D the convex hull of B(0, R1) ∪ {x0} is a subset of D. Using this fact and D ⊂ B(0, 1)
one may easily show that for every x in the line segment between 0 and x0 we have

|x− x0| ≤ cδD(x), where c depends only on R1. Hence δ
−1/2
D (x) ≤ c1/2|x− x0|−1/2. Now

(15) easily follows by using polar coordinates with centre at 0. �

In the sequel we will use the method of continuity (cf. [26, page 20], [9]). Roughly
speaking, we will deform a convex bounded domain D to a ball B(0, 1). To do this we
will consider the following construction. Let C1 > 0, R1 > 0, κ2 ≥ κ1 > 0. For any
D ∈ F (C1, R1, κ1, κ2) and t ∈ [0, 1] we define

D(t) = {x : ∃y ∈ D, z ∈ B(0, 1) such that x = (1− t)y + tz}. (16)

Lemma 2.4. For any C1 > 0, R1 > 0, κ2 ≥ κ1 > 0 there exists C ′1 > 0, R′1 > 0,
κ′2 ≥ κ′1 > 0 such that for any D ∈ F (C1, R1, κ1, κ2) and any t ∈ [0, 1] we have D(t) ∈
F (C ′1, R

′
1, κ
′
1, κ
′
2).

This lemma seems to be standard, similar results are well known (cf. Appendix in
D. Gilbarg and N. Trudinger’s book [19], pages 381-384 or [9, proof of Theorem 3.1]).
Therefore we omit its proof.

Now we state some properties of the solution of (1-2) and its harmonic extension which
will be needed in the rest of the paper.

Let D ⊂ R2 be an open bounded set and ϕ(D) be the solution of (1-2) for D. Then the
following scaling property is well known [4, (1.61)]:

ϕ(aD)(ax) = aϕ(D)(x), x ∈ D, a > 0. (17)

For any open bounded sets D1, D2 ⊂ R2 put d(D1, D2) = [sup{dist(x, ∂D2) : x ∈
∂D1}] ∨ [sup{dist(x, ∂D1) : x ∈ ∂D2}].
Lemma 2.5. Let {Dn}∞n=0 be a sequence of bounded convex domains in R2 and ϕ(Dn) be
the solution of (1-2) for Dn. If d(Dn, D0) → 0 as n → ∞ then for any x ∈ D0 we have

ϕ(Dn)(x)→ ϕ(D0)(x) as n→∞.
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This lemma seems to be well known and follows easily from (17) so we omit its proof
(in fact it holds not only for convex domains but we need it only in this case).

Lemma 2.6. Let C1 > 0, R1 > 0, κ2 ≥ κ1 > 0 and put Λ = {C1, R1, κ1, κ2}. There exist
a constant c1 = c1(Λ) and an absolute constant c2 such that for any D ∈ F (Λ) we have

ϕ(x) ≤ 2

π
, x ∈ D,

c1δ
1/2
D (x) ≤ ϕ(x) ≤ c2δ

1/2
D (x), x ∈ D,

where ϕ is the solution of (1-2) for D.

Proof. We have D ⊂ B(0, 1) so for any x ∈ D we get

ϕ(x) = Ex(τD) ≤ Ex(τB(0,1)) =
2

π
(1− |x|2)1/2.

Let x ∈ D and x∗ ∈ ∂D be a point such that |x − x∗| = δD(x). Put z = x∗ − ~n(x∗),
where ~n(x∗) is the normal inner unit vector at x∗ (clearly |z − x∗| = 1). By convexity of
D we get B(z, 1) ⊂ Dc. Put

U = {y ∈ R2 : 1 < |y − z| < 3}.
Since D ⊂ B(0, 1) we get diam(D) ≤ 2. Clearly, x∗ ∈ ∂D ∩ ∂U which implies that D ⊂ U
and δD(x) = δU (x). By [13] there exists an absolute constant c2 such that

ϕ(x) = Ex(τD) ≤ Ex(τU ) ≤ c2δ
1/2
U (x) = c2δ

1/2
D (x).

Now we will show the lower bound estimate of ϕ. Since D ⊂ B(0, 1) we have δD(x) ≤ 1.
Let x ∈ D. If δD(x) ≥ r0, where r0 = r0(Λ) is the constant from Lemma 2.2 then

ϕ(x) = Ex(τD) ≥ Ex(τB(x,r0)) =
2

π
r0 ≥

2

π
r0δ

1/2
D (x).

If δD(x) < r0 then we may choose a coordinate system as in Lemma 2.2 (see Figure 1)
and assume that x = (x1, 0), δD(x) = x1. Put B = B((r0, 0), r0). By Lemma 2.2 we have
B ⊂ D. Clearly x ∈ B and δD(x) = δB(x) = x1. It follows that

ϕ(x) = Ex(τD) ≥ Ex(τB) =
2

π

(
r2

0 − |(r0, 0)− (x1, 0)|2
)1/2

≥ 2

π
r

1/2
0 δ

1/2
D (x).

�

Lemma 2.7. Let C1 > 0, R1 > 0, κ2 ≥ κ1 > 0, D ∈ F (C1, R1, κ1, κ2), ϕ be the solution of
(1-2) for D and u the harmonic extension of ϕ given by (6-10). For any (x1, x2, x3) ∈ R3

+

we have H(u)(x1, x2,−x3) = H(u)(x1, x2, x3).

Proof. For x = (x1, x2, x3) put x̂ = (x1, x2,−x3). For x ∈ R3
+ we have uii(x̂) = uii(x)

for i = 1, 2, 3, u12(x̂) = u12(x), u13(x̂) = −u13(x), u23(x̂) = −u23(x). Hence H(u)(x̂) =
H(u)(x). �

We recall the definition of α-harmonic function, α ∈ (0, 2). A Borel function h on Rd

is said to be α-harmonic on open set D ⊂ Rd if for any x0 ∈ Rd, r > 0 such that
B(x0, r) ⊂ D we have

h(x) =

∫
Bc(x0,r)

Pr(x− x0, y − x0)h(y) dy,

where the integral is absolutely convergent and Pr(x, y) is the Poisson kernel for a ball

B(0, r) corresponding to (−∆)α/2. The explicit formula for the Poisson kernel is well
known, see e.g. (1.57) in [4]. For α = 1, d = 2 the Poisson kernel for B(z, s) is given by
(19). It is well known that h is α-harmonic on open set D ⊂ Rd if and only if h is C2 on

D and (−∆)α/2h(x) = 0 for any x ∈ D. A Borel function h on Rd is said to be singular
α-harmonic on open set D ⊂ Rd if it is α-harmonic on D and h ≡ 0 on Dc.
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We will need the following formulas of derivatives of K(x) = CKx3(x2
1 + x2

2 + x2
3)−3/2:

K1(x) = −3CKx3x1(x2
1 + x2

2 + x2
3)−5/2,

K2(x) = −3CKx3x2(x2
1 + x2

2 + x2
3)−5/2,

K3(x) = CK(x2
1 + x2

2 − 2x2
3)(x2

1 + x2
2 + x2

3)−5/2.

K11(x) = CKx3(12x2
1 − 3x2

2 − 3x2
3)(x2

1 + x2
2 + x2

3)−7/2,

K22(x) = CKx3(12x2
2 − 3x2

1 − 3x2
3)(x2

1 + x2
2 + x2

3)−7/2,

K33(x) = CKx3(6x2
3 − 9x2

1 − 9x2
2)(x2

1 + x2
2 + x2

3)−7/2.

K12(x) = 15CKx3x1x2(x2
1 + x2

2 + x2
3)−7/2,

K13(x) = CKx1(12x2
3 − 3x2

1 − 3x2
2)(x2

1 + x2
2 + x2

3)−7/2,

K23(x) = CKx2(12x2
3 − 3x2

1 − 3x2
2)(x2

1 + x2
2 + x2

3)−7/2.

Remark 2.8. All constants appearing in this paper are positive and finite. We write
C = C(a, . . . , z) to emphasize that C depends only on a, . . . , z. We adopt the convention
that constants denoted by c (or c1, c2, etc.) may change their value from one use to the
next.

Remark 2.9. In Sections 3, 4 and in the proof of Proposition 6.2 we use the following
convention. Constants denoted by c (or c1, c2, etc. ) depend on Λ = {C1, R1, κ1, κ2},
where Λ = {C1, R1, κ1, κ2} appears in Definition 2.1. We write f(x) ≈ g(x) for x ∈ A ⊂ R2

to indicate that there exist constants c1 = c1(Λ), c2 = c2(Λ) such that for any x ∈ A we
have c1g(x) ≤ f(x) ≤ c2g(x) (in particular, it may happen that both f , g are positive on
A or both f , g are negative on A).

3. Estimates of derivatives of ϕ near ∂D

In this section we obtain estimates of ϕi, ϕij near ∂D. These results are used in this
paper only in Section 4, where the behaviour of uij near ∂D × {0} is studied. To obtain
estimates of ϕi, ϕij we use the well known representation (18) formulated below. This

formula involves the Poisson kernel P (x, y) for a ball corresponding to (−∆)1/2. Let us
recall that due to nonlocality of this operator the support of the corresponding harmonic
measure P (x, y) dy for a ball B is equal to Bc. This makes proofs in this section quite long
and complicated because we have to obtain estimates of integrals involving the Poisson
kernel and its derivatives over different subdomains of D. Most of the technics used in
this section are similar to the standard methods used in papers by Z.-Q. Chen, R. Song
[12], T. Kulczycki [28] and K. Bogdan, T. Kulczycki, A. Nowak [6]. These methods were

used in estimates of the Green function corresponding to (−∆)α/2, α ∈ (0, 2) on smooth
domains [12], [28] and in estimates of gradient of α-harmonic functions [6].

It should be mentioned that similar estimates of derivatives of α-harmonic functions
were simultaneously obtained by the author’s student G. Żurek in his Master Thesis [36].

The most difficult part of this section is the proof of Lemma 3.7. In this lemma estimates
of ϕ22(x1, 0) are obtained (y2 axis is tangent to the boundary of D at (0, 0) ∈ ∂D, see
Figure 3). To the best of author knowledge the idea of the proof is new. Roughly speaking,
the proof is based on the representation

ϕ22(x1, 0) =

∫
D\B

P2((x1, 0), y)ϕ2(y) dy

and the precise control of derivatives of ϕ in normal and tangent directions in a small
neighborhood of (0, 0).

In the whole section we fix C1 > 0, R1 > 0, κ2 ≥ κ1 > 0, D ∈ F (C1, R1, κ1, κ2) and
x0 ∈ ∂D. We put Λ = {C1, R1, κ1, κ1}. ϕ is the solution of (1-2) for D. Unless it is stated
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otherwise we fix the coordinate system CSx0 and notation as in Lemma 2.2 (see Figure
1). In particular x0 is (0, 0) in CSx0 coordinates.

Let r ∈ (0, r0], z = (r, 0), s ∈ (0, r], B = B(z, s) (where r0 is the constant from Lemma
2.2). It is well known (see e.g. [4, (1.50), (1.56), (1.57)]) that

ϕ(x) = h(x) +

∫
Bc
P (x, y)ϕ(y) dy, x ∈ B, (18)

where h(x) = CB(s2 − |x− z|2)1/2, x ∈ B,

P (x, y) = CP
(s2 − |x− z|2)1/2

(|y − z|2 − s2)1/2|x− y|2 , x ∈ B, y ∈ (B)c, (19)

CB = 2/π, CP = π−2.

We have h1(x) = CB(r − x1)(s2 − |x − z|2)−1/2, x ∈ B. Put Pi(x, y) = ∂
∂xi
P (x, y),

i = 1, 2. For any x ∈ B, y ∈ (B)c we have P1(x, y) = A(x, y) + E(x, y) where

A(x, y) = −CP
(s2 − |x− z|2)−1/2(x1 − r)
(|y − z|2 − s2)1/2|x− y|2 , (20)

E(x, y) = −2CP
(s2 − |x− z|2)1/2(x1 − y1)

(|y − z|2 − s2)1/2|x− y|4 . (21)

In this section we use only these geometric properties of the domain D which are stated
in Lemmas 2.2, 2.3 and additionally facts that D ⊂ B(0, 1) and D is convex. Let us
recall that all constants in the assertions of Lemmas 2.2, 2.3 depend only on Λ. Hence
all constants in estimates in this section depend also only on Λ. Let us recall that in the
whole section we use convention stated in Remark 2.9.

Lemma 3.1. There exists r1 ∈ (0, r0/4], r1 = r1(Λ) such that for any x1 ∈ (0, r1] we have

ϕ1(x1, 0) ≈ x−1/2
1 .

Proof. Put r = r0. We will use (18) for s = r, in particular B = B(z, r). Note that for
x = (x1, 0) we have r2 − |x− z|2 = x1(r + |x1 − r|) ≤ 2rx1. Put

k(x) = 1B(x)

∫
Bc
P (x, y)ϕ(y) dy + 1Bc(x)ϕ(x), x ∈ R2.

We have k(x) ≥ 0 on R2, by (18) k(x) ≤ ϕ(x) on B and k is 1-harmonic on B. For
definition and basic properties of α-harmonic functions see Section 2 and [4, pages 20-21,
61]. The fact that k is 1-harmonic follows from [4, page 61]. By [6, Lemma 3.2] (cf. also
[30]) and Lemma 2.6

k1(x1, 0) ≤ 2
k(x1, 0)

x1
≤ 2

kϕ(x1, 0)

x1
≤ cx−1/2

1 , for x1 ∈ (0, r].

By the formula for h1 and the formula for r2 − |x − z|2 we get h1(x1, 0) = CB(r −
x1)(2r − x1)−1/2x

−1/2
1 ≤ CBr

1/2x
−1/2
1 . Hence ϕ1(x1, 0) = h1(x1, 0) + k1(x1, 0) ≤ cx

−1/2
1

for x1 ∈ (0, r/4].

What remains is to show that ϕ1(x1, 0) ≥ cx
−1/2
1 . For x1 ∈ (0, r] we have ϕ1(x1, 0) =∫

Bc P1((x1, 0), y)ϕ(y) dy + h1(x1, 0). We will estimate
∫
Bc P1ϕ.

Let x1 ∈ (0, f(r/2) ∧ f(−r/2)]. By Lemma 2.2 we have f(r/2) ≤ c4(r/2)2 ≤ r/16
(because c4r ≤ 1/4), so x1 ∈ (0, r/16]. Note that f(r/2) ∧ f(−r/2) ≥ c3r

2/4, where c3

and r = r0 are constants from Lemma 2.2, c3r
2/4 depends only on Λ. Let p1 ∈ (0, r/2] be

such that f(p1) = x1, p2 ∈ [−r/2, 0) be such that f(p2) = x1 (recall that f is defined in
Lemma 2.2). By Lemma 2.2 f(x1) < c4x

2
1 ≤ (1/2)x1, f(−x1) ≤ (1/2)x1, so p1 > x1 and

|p2| > x1. Let f1 : [−r, r]→ R be defined by f1(y2) = r− (r2 − y2
2)1/2. Put (see Figure 2)
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y1

y2

x1

x1

p1

D1

B = B(z, r)

D2

D3

∂D

∂B

Figure 2

D1 = {(y1, y2) : y2 ∈ [−x1, x1], y1 ∈ (f(y2), f1(y2))},
D2 = {(y1, y2) : y2 ∈ (x1, p1] ∪ [p2,−x1), y1 ∈ (f(y2), f1(y2) ∧ x1)},
D3 = D \ (D1 ∪D2 ∪B).

Note that
∫
D\B A((x1, 0), y)ϕ(y) dy > 0 and

∫
D3
E((x1, 0), y)ϕ(y) dy > 0, because we have

A((x1, 0), y) > 0 for y ∈ D \B and E((x1, 0), y) > 0 for y ∈ D3.
Let us recall that we use (18) for s = r. We have f1(y2) ≤ y2

2/r = cy2
2. By Lemma 2.6

ϕ(y) ≤ cδ1/2
D (y). For y ∈ D1 ∪D2 we also have δD(y) ≤ y1 ≤ f1(y2) ≤ cy2

2. It follows that
ϕ(y) ≤ c|y2| for y ∈ D1 ∪ D2. Note that for y ∈ D1 we have |y2| ≤ x1 so ϕ(y) ≤ cx1.
Note also that |y − z|2 − r2 = (|y − z| + r)(|y − z| − r). This is bounded from above
by 3r(f1(y2) − y1) and from below by r(f1(y2) − y1)/2. Hence for y ∈ D1 ∪D2 we have
|y − z|2 − r2 ≈ f1(y2)− y1. For y ∈ D1 we have

0 < y1 ≤ f1(x1) =
x2

1

r + (r2 − x2
1)1/2

≤ x2
1

r
≤ x1

16
,

because x1 ∈ (0, r/16]. Hence for y ∈ D1 we have |x − y| ≥ |x1 − y1| ≥ 15x1/16 and
|x1 − y1| ≤ x1. It follows that
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∣∣∣∣∫
D1

E((x1, 0), y)ϕ(y) dy

∣∣∣∣ ≤ cx
−3/2
1

∫
D1

dy

(|y − z|2 − r2)1/2

≈ x
−3/2
1

∫ x1

−x1
dy2

∫ f1(y2)

f(y2)
(f1(y2)− y1)−1/2 dy1

= 2x
−3/2
1

∫ x1

−x1
(f1(y2)− f(y2))1/2 dy2

≤ cx
1/2
1 .

For y ∈ D2 we have |x− y| = ((x1 − y1)2 + y2
2)1/2 ≥ |y2| and |x1 − y1| ≤ |x1|+ |y1| ≤ 2x1.

Note also that by Lemma 2.2 we have p1 ≤ c
√
x1 ∧ (r/2), |p2| ≤ c

√
x1 ∧ (r/2) so∣∣∣∣∫

D2

E((x1, 0), y)ϕ(y) dy

∣∣∣∣ ≤ cx
3/2
1

∫ c
√
x1∧(r/2)

x1

dy2y
−3
2

∫ f1(y2)∧x1

f(y2)
(f1(y2)− y1)−1/2 dy1

≤ cx
3/2
1

∫ c
√
x1∧(r/2)

x1

y−3
2 (f1(y2)− f(y2))1/2 dy2

≤ cx
1/2
1 ,

(we omit here
∫ −x1
p2

. . . because it can be estimated in the same way).

We have

ϕ1(x1, 0) = h1(x1, 0) +

∫
D\B

Aϕ+

∫
D1

Eϕ+

∫
D2

Eϕ+

∫
D3

Eϕ.

By the formula for h1 we easily get h1(x1, 0) ≥ (2
√

2)−1CBr
1/2x

−1/2
1 . It follows that

ϕ1(x1, 0) ≥ (2
√

2)−1CBr
1/2x

−1/2
1 − cx1/2

1 = x
−1/2
1

(
(2
√

2)−1CBr
1/2 − cx1

)
.

Put c1 = (2
√

2)−1CBr
1/2. For sufficiently small x1 we have c1−cx1 ≥ c1/2 and ϕ1(x1, 0) ≥

(c1/2)x
−1/2
1 (one can take x1 ≤ r1 := (c1/(2c)) ∧ (r/4)). �

Lemma 3.2. Put r1 = r0/4. For any x1 ∈ (0, r1] we have |ϕ2(x1, 0)| ≤ cx1/2
1 | log x1|.

Proof. Put r = r0. We will use (18) for s = r, in particular B = B(z, r). Let x1 ∈ (0, r/4].
We have ϕ2(x1, 0) =

∫
Bc P2((x1, 0), y)ϕ(y) dy + h2(x1, 0), h2(x1, 0) = 0, P2((x1, 0), y) =

2CP
(r2−|x−z|2)1/2y2

(|y−z|2−r2)1/2|x−y|4 , y ∈ (B)c. Let f1 be such as in the proof of Lemma 3.1. Put

D1 = {(y1, y2) : y2 ∈ [−x1, x1], y1 ∈ (f(y2), f1(y2))},
D2 = {(y1, y2) : y2 ∈ (x1, r/2] ∪ [−r/2,−x1), y1 ∈ (f(y2), f1(y2))},
D3 = D \ (D1 ∪D2 ∪B).

By the same arguments as in the proof of Lemma 3.1 for x = (x1, 0) we have r2−|x−z|2 ≤
2rx1 and for y ∈ D1∪D2 we have |y−z|2−r2 ≈ f1(y2)−y1. Note also that for y ∈ D1∪D2

we have δD(y) ≤ y1 ≤ f1(y2) ≤ cy2
2 so (by Lemma 2.6) ϕ(y) ≤ c|y2|. For y ∈ D1 we have

|y2| ≤ x1 so ϕ(y) ≤ cx1 and |x− y| ≥ 3x1/4. Hence∣∣∣∣∫
D1

P2((x1, 0), y)ϕ(y) dy

∣∣∣∣ ≤ cx−3/2
1

∫
D1

dy

(|y − z|2 − r2)1/2
.

By the same estimates as in the proof of Lemma 3.1 this is bounded by cx
1/2
1 .
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For x = (x1, 0) and y ∈ D2 we have |x− y| ≥ y2 and f1(y2) ≤ cy2
2. It follows that∣∣∣∣∫

D2

P2((x1, 0), y)ϕ(y) dy

∣∣∣∣ ≤ cx
1/2
1

∫ r/2

x1

dy2y
−2
2

∫ f1(y2)

f(y2)
(f1(y2)− y1)−1/2 dy1

≤ cx
1/2
1

∫ r/2

x1

y−2
2 (f1(y2)− f(y2))1/2 dy2

≤ cx
1/2
1 | log x1|.

For x = (x1, 0), y ∈ D3 we have |y − z|2 − r2 = (|y − z| + r)δB(y) ≥ rδB(y) and
y2/|x− y|4 ≤ |x− y|−3 ≤ (r/2)−3. Put B1 = {w /∈ B : δB(w) ≤ 2}. Since D ⊂ B(0, 1) we
have D \B ⊂ B1. Hence∣∣∣∣∫

D3

P2((x1, 0), y)ϕ(y) dy

∣∣∣∣ ≤ cx1/2
1

∫
B1

δ
−1/2
B (y) dy = cx

1/2
1

∫ 2

r

ρ

(ρ− r)1/2
dρ = cx

1/2
1 .

It follows that |ϕ2(x1, 0)| ≤ cx1/2
1 | log x1|. �

In the following corollary we simply restate Lemmas 3.1 and 3.2 for an arbitrary point

in y ∈ D (with δD(y) ≤ r1). Let us recall that ~T (y), ~n(y) are given by (11), (12) and
∂ψ

∂ ~T
(y), ∂ψ

∂~n (y) are given by (13), (14).

By Lemmas 3.1, 3.2 and 2.2 we obtain

Corollary 3.3. There exists r1 ∈ (0, r0/4], r1 = r1(Λ) such that for any y ∈ D, δD(y) ≤ r1

we have
∂ϕ

∂~n
(y) ≈ δ

−1/2
D (y), (22)∣∣∣∣∂ϕ

∂ ~T
(y)

∣∣∣∣ ≤ cδ
1/2
D (y)| log δD(y)|, (23)

|∇ϕ(y)| ≤ cδ
−1/2
D (y). (24)

Lemma 3.4. For any y ∈ D we have |∇ϕ(y)| ≤ cδ−1/2
D (y).

Proof. Let r1 = r1(Λ) be a constant from Corollary 3.3. If y ∈ D satisfies δD(y) ≤ r1 then
the assertion follows from Corollary 3.3. Fix y0 ∈ D such that δD(y0) > r1 and put B =
B(y0, r1). We are going to estimate |∇ϕ(y0)|. For y ∈ B we have ϕ(y) = h(y)+k(y), where

h(y) = CB(r2
1 − |y− y0|2)1/2 and k(y) = 1B(y)

∫
D\B P (y− y0, z− y0)ϕ(z) dz+ 1Bc(y)ϕ(y),

where P is given by (19) with s = r1. Clearly ∇h(y0) = 0. k is a 1-harmonic function on
B and k(y) ≤ ϕ(y) ≤ 2/π (the last inequality follows from Lemma 2.6). By [6, Lemma

3.2] |∇k(y0)| ≤ 2k(y0)/r1 ≤ 4/(πr1) ≤ 4δ
−1/2
D (y)/(πr1). �

The definition of α-harmonic functions (see Section 2) on an open set U ⊂ Rd demands
that the function is defined on the whole Rd. ϕ1, ϕ2 are well defined on D and also on
Dc \∂D. ϕ1, ϕ2 are not well defined on ∂D but ∂D has Lebesgue measure zero. One may
formally defined ϕ1 = ϕ2 = 0 on ∂D. For the definition of singular α-harmonic functions,
see Section 2.

Lemma 3.5. ϕ1, ϕ2 are singular 1-harmonic on D.

The proof of this lemma is omitted. By standard arguments (translation invariance and

regularity of ϕ) it can be easily shown that (−∆)1/2
(
∂ϕ
∂xi

)
(x) = ∂

∂xi

(
(−∆)1/2ϕ

)
(x) = 0

for x ∈ D.

Remark 3.6. ϕ11, ϕ22 are not 1-harmonic on D because they are not locally integrable on
R2 (see Corollary 3.10).
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y1y1

y2y2

z = (r, 0)
r − s

x1

r/2

−x1

−r/2

BD1

D1

D2

D2

D3

D3

.

s

Figure 3

Lemma 3.7. There exists r2 ∈ (0, r0/4], r2 = r2(Λ) such that for any x1 ∈ (0, r2] we have

ϕ22(x1, 0) ≈ −x−1/2
1 .

Proof. Put r = r0. Let r1 be the constant from Corollary 3.3. In this proof we take
s ∈ (r − (r1/2)2, r), i.e. 0 < r − s < (r1/2)2. Recall that z = (r, 0), B = B(z, s)
and P is given by (19). For any x1 ∈ (r − s, r] by Lemma 3.5 we have ϕ2(x1, 0) =∫
D\B P ((x1, 0), y)ϕ2(y) dy. It follows that ϕ22(x1, 0) =

∫
D\B P2((x1, 0), y)ϕ2(y) dy. We

have P2((x1, 0), y) = 2CP
(s2−|x−z|2)1/2y2

(|y−z|2−s2)1/2|x−y|4 . Take x1 =
√
r − s (we have

√
r − s < r1/2).

Let f1 : [−s, s]→ R be defined by f1(y2) = r −
√
s2 − y2

2. Put (see Figure 3)

D1 = {(y1, y2) : y2 ∈ [−x1, x1], y1 ∈ (f(y2), f1(y2))},
D2 = {(y1, y2) : y2 ∈ (x1, r1/2] ∪ [−r1/2,−x1), y1 ∈ (f(y2), f1(y2))},
D3 = D \ (D1 ∪D2 ∪B).

By Lemma 2.2 we have for y ∈ D1 ∪D2

ϕ2(y) = cosα(y)
∂ϕ

∂ ~T
(y)− sinα(y)

∂ϕ

∂~n
(y).

Note that by definition of s we have δD(y) < r1 for y ∈ D1 ∪D2. By Corollary 3.3 we get
for y ∈ D1 ∪D2 ∣∣∣∣∂ϕ

∂ ~T
(y)

∣∣∣∣ ≤ c(y1 − f(y2))1/2| log(y1 − f(y2))|

and
∂ϕ

∂~n
(y) ≈ (y1 − f(y2))−1/2.
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Hence ∣∣∣∣cosα(y)
∂ϕ

∂ ~T
(y)

∣∣∣∣ ≤ c(y1 − f(y2))1/2| log(y1 − f(y2))|

and

− sinα(y)
∂ϕ

∂~n
(y) ≈ −y2(y1 − f(y2))−1/2.

Note also that for y ∈ D1 ∪D2 we have (|y− z|2− s2)1/2 ≈ (−y1 + f1(y2))1/2. Recall that
we have chosen x1 =

√
r − s. It follows that

−
∫
D1

P2((x1, 0), y) sinα(y)
∂ϕ

∂~n
(y) dy

≈ −x−7/2
1

∫ x1

−x1
dy2y

2
2

∫ f1(y2)

f(y2)
dy1(−y1 + f1(y2))−1/2(y1 − f(y2))−1/2 ≈ −x1/2

1 ,

because
∫ b
a (x− a)−1/2(b− x)−1/2 dx = const.

Similarly,

−
∫
D2

P2((x1, 0), y) sinα(y)
∂ϕ

∂~n
(y) dy

≈ −x1/2
1

∫ r1/2

x1

dy2y
−2
2

∫ f1(y2)

f(y2)
dy1(−y1 + f1(y2))−1/2(y1 − f(y2))−1/2 ≈ −x1/2

1 .

On the other hand we have∣∣∣∣∫
D1

P2((x1, 0), y) cosα(y)
∂ϕ

∂ ~T
(y) dy

∣∣∣∣
≤ cx

−7/2
1

∫ x1

−x1
dy2y2

∫ f1(y2)

f(y2)
dy1(−y1 + f1(y2))−1/2(y1 − f(y2))1/2| log(y1 − f(y2))|

≤ cx
1/2
1 | log x1|,∣∣∣∣∫
D2

P2((x1, 0), y) cosα(y)
∂ϕ

∂ ~T
(y) dy

∣∣∣∣
≤ cx

1/2
1

∫ r1/2

x1

dy2y
−3
2

∫ f1(y2)

f(y2)
dy1(−y1 + f1(y2))−1/2(y1 − f(y2))1/2| log(y1 − f(y2))|

≤ cx
1/2
1 | log x1|2.

By Lemmas 2.3, 3.4 we obtain∣∣∣∣∫
D3

P2((x1, 0), y)ϕ2(y) dy

∣∣∣∣ ≤ cx1/2
1

∫
D3

δ
−1/2
B (y)δ

−1/2
D (y) dy ≤ cx1/2

1 .

It follows that

−c1x
−1/2
1 − c2x

1/2
1 | log x1|2 ≤ ϕ22(x1, 0) ≤ −c3x

−1/2
1 + c4x

1/2
1 | log x1|2,

where x1 =
√
r − s. It is very important that c1, c2, c3, c4 do not depend on s. Hence

there exists r2 ∈ (0, r/4], r2 = r2(Λ) such that for any x1 ∈ (0, r2] we have ϕ22(x1, 0) ≈
−x−1/2

1 . �

Lemma 3.8. There exists r2 ∈ (0, r0/4], r2 = r2(Λ) such that for any x1 ∈ (0, r2] we have

ϕ11(x1, 0) ≈ −x−3/2
1 .
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Proof. First we show that |ϕ11(x1, 0)| ≤ cx−3/2
1 , x1 ∈ (0, r2]. We will use similar notation

as in Lemma 3.7. Put r = r0. Let r1 be the constant from Corollary 3.3. We take
s ∈ (r − (r1/2)2, r), z = (r, 0), B = B(z, s) and P is given by (19). For any x1 ∈ (r − s, r]
by Lemma 3.5 we have ϕ1(x1, 0) =

∫
D\B P ((x1, 0), y)ϕ1(y) dy. It follows that

ϕ11(x1, 0) =

∫
D\B

P1((x1, 0), y)ϕ1(y) dy

=

∫
D\B

A((x1, 0), y)ϕ1(y) dy +

∫
D\B

E((x1, 0), y)ϕ1(y) dy,

where A, E are given by (20), (21).

Take x1 =
√
r − s (we have

√
r − s < r1/2 ≤ r/8). By (24) |ϕ1(y)| ≤ cδ−1/2

D (y), y ∈ D.
We have ∫

D\B
A((x1, 0), y)ϕ1(y) dy =

r − x1

s2 − (x1 − r)2

∫
D\B

P ((x1, 0), y)ϕ1(y) dy,

∣∣∣∣∣
∫
D\B

P ((x1, 0), y)ϕ1(y) dy

∣∣∣∣∣ = |ϕ1(x1, 0)| ≤ cx−1/2
1

and r−x1
s2−(x1−r)2 ≈ x

−1
1 so ∣∣∣∣∣

∫
D\B

A((x1, 0), y)ϕ1(y) dy

∣∣∣∣∣ ≤ cx−3/2
1

for x1 =
√
r − s.

Let f1, D1, D2, D3 be such as in the proof of Lemma 3.7. Using |ϕ1(y)| ≤ cδ
−1/2
D (y)

and similar arguments as in the proof of Lemma 3.7 we get the following estimates∣∣∣∣∫
D1

E((x1, 0), y)ϕ1(y) dy

∣∣∣∣ (25)

≤ cx
−5/2
1

∫ x1

−x1
dy2

∫ f1(y2)

f(y2)
dy1(−y1 + f1(y2))−1/2(y1 − f(y2))−1/2 ≤ cx−3/2

1 ,

∣∣∣∣∫
D2

E((x1, 0), y)ϕ1(y) dy

∣∣∣∣ (26)

≤ cx
1/2
1

∫ r1/2

x1

dy2 y
−4
2

∫ f1(y2)

f(y2)
dy1(−y1 + f1(y2))−1/2(y1 − f(y2))−1/2(x1 + y1)

≤ cx
−3/2
1 ,

(here we used the estimate y1 ≤ cy2
2). By Lemmas 2.3, 3.4 we obtain∣∣∣∣∫

D3

E((x1, 0), y)ϕ1(y) dy

∣∣∣∣ ≤ cx1/2
1

∫
D3

δ
−1/2
B (y)δ

−1/2
D (y) dy ≤ cx1/2

1 .

It follows that |ϕ11(x1, 0)| ≤ cx−3/2
1 , where c does not depend on s and x1 =

√
r − s. Since

s ∈ (r − (r1/2)2, r) we get |ϕ11(x1, 0)| ≤ cx−3/2
1 , x1 ∈ (0, r1/2].

Now we will show that ϕ11(x1, 0) ≤ −cx−3/2
1 for x1 ∈ (0, r2]. Here we will use notation

similar to the notation used in the proof of Lemma 3.1. We will use (18) for s = r, in
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particular B = B(z, r). By (18) we get for x1 ∈ (0, r]

ϕ11(x1, 0) = h11(x1, 0) +

∫
D\B

P11((x1, 0), y)ϕ(y) dy

= h11(x1, 0) +

∫
D\B

∂A

∂x1
((x1, 0), y)ϕ(y) dy +

∫
D\B

∂E

∂x1
((x1, 0), y)ϕ(y) dy.

One easily gets h11(x1, 0) ≈ −x−3/2
1 for x1 ∈ (0, r/4]. For x ∈ B, y ∈ (B)c we have

∂A

∂x1
(x, y) =

−CP (r2 − |x− z|2)−3/2(x1 − r)2

(|y − z|2 − r2)1/2|x− y|2 +
−CP (r2 − |x− z|2)−1/2

(|y − z|2 − r2)1/2|x− y|2

+
−2CP (r2 − |x− z|2)−1/2(r − x1)(x1 − y1)

(|y − z|2 − r2)1/2|x− y|4
= A(1)(x, y) +A(2)(x, y) +A(3)(x, y),

∂E

∂x1
(x, y) =

−2CP (r2 − |x− z|2)−1/2(r − x1)(x1 − y1)

(|y − z|2 − r2)1/2|x− y|4 +
−2CP (r2 − |x− z|2)1/2

(|y − z|2 − r2)1/2|x− y|4

+
8CP (r2 − |x− z|2)1/2(x1 − y1)2

(|y − z|2 − r2)1/2|x− y|6
= E(1)(x, y) + E(2)(x, y) + E(3)(x, y).

Let x1 ∈ (0, r/8], y ∈ (B)c. We have A(1)(x, y) ≤ 0, A(2)(x, y) ≤ 0. We also have

A(3)(x, y) ≥ 0 iff y1 ≥ x1. Let f1 be such as in the proof of Lemma 3.1. Let p′1 > 0 be
such that f1(p′1) = x1, p′2 < 0 be such that f1(p′2) = x1 (we have p′2 = −p′1). Note that

p′1 ≈
√
x1, |p′2| ≈

√
x1. Note also that f1(r/2) = r(1−

√
3/2) > r/8 and f1(p′1) = x1 ≤ r/8

so p′1 < r/2. Put

D′1 = {(y1, y2) : y2 ∈ [p′2, p
′
1], y1 ∈ (f(y2), f1(y2))},

D′2 = {(y1, y2) : y2 ∈ (p′1, r/2] ∪ [−r/2, p′2), y1 ∈ (f(y2), f1(y2))},
D′3 = D \ (D′1 ∪D′2 ∪B).

We have
∫
D′1
A(3)((x1, 0), y)ϕ(y) dy ≤ 0. Note that for y ∈ D′2 we have y1 ≤ f1(y2) ≤ cy2

2,

which gives ϕ(y) ≤ cδ1/2
D (y) ≤ c(y2

2)1/2 = cy2 by Lemma 2.6. Hence∫
D′2

A(3)((x1, 0), y)ϕ(y) dy ≤ cx
−1/2
1

∫ r/2

c
√
x1

dy2 y
−4
2

∫ f1(y2)

f(y2)
dy1 (y1 − f1(y2))−1/2y1ϕ(y)

≤ cx
−1/2
1

∫ r/2

c
√
x1

dy2 ≤ cx−1/2
1 ,

∣∣∣∣∣
∫
D′3

A(3)((x1, 0), y)ϕ(y) dy

∣∣∣∣∣ ≤ cx−1/2
1

∫
D′3

δ
−1/2
B (y) dy ≤ cx−1/2

1 .

Note that E(1)(x, y) = A(3)(x, y) and E(2)(x, y) ≤ 0. To estimate
∫
D\B E

(3)ϕ we put

D′′1 = {(y1, y2) : y2 ∈ [−x1, x1], y1 ∈ (f(y2), f1(y2))},
D′′2 = {(y1, y2) : y2 ∈ (x1, r/2] ∪ [−r/2,−x1), y1 ∈ (f(y2), f1(y2))},
D′′3 = D \ (D′′1 ∪D′′2 ∪B).
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Note that for y ∈ D′′1 we have (x1 − y1)2 ≤ x2
1, which gives ϕ(y) ≤ cδ

1/2
D (y) ≤ cx1 by

Lemma 2.6. Hence∫
D′′1

E(3)((x1, 0), y)ϕ(y) dy ≤ cx
−7/2
1

∫ x1

−x1
dy2

∫ f1(y2)

f(y2)
dy1 (y1 − f1(y2))−1/2ϕ(y)

≤ cx
−1/2
1 .

Note that for y ∈ D′′2 we have (x1 − y1)2 ≤ x2
1 + y2

1 ≤ x2
1 + cy4

2 and ϕ(y) ≤ cδ
1/2
D (y) ≤ cy2

so ∫
D′′2

E(3)((x1, 0), y)ϕ(y) dy

≤ cx
1/2
1

∫ r/2

x1

dy2 y
−6
2 (x2

1 + y4
2)

∫ f1(y2)

f(y2)
dy1 (y1 − f1(y2))−1/2ϕ(y)

≤ cx
5/2
1

∫ r/2

x1

y−4
2 dy2 + cx

1/2
1

∫ r/2

x1

dy2 ≤ cx−1/2
1 .

We also have
∫
D′′3

E(3)((x1, 0), y)ϕ(y) dy ≤ cx1/2
1 .

It follows that for sufficiently small x1 we have ϕ11(x1, 0) ≤ −cx−3/2
1 . �

Lemma 3.9. There exists r2 ∈ (0, r0/4], r2 = r2(Λ) such that for any x1 ∈ (0, r2] we have

|ϕ12(x1, 0)| ≤ cx−1/2
1 | log x1|.

Proof. We will use similar notation as in Lemma 3.7. Put r = r0. Let r1 be the constant
from Corollary 3.3. We take s ∈ (r − (r1/2)2, r). Recall that z = (r, 0), B = B(z, s)
and P is given by (19). For any x1 ∈ (r − s, r] by Lemma 3.5 we have ϕ2(x1, 0) =∫
D\B P ((x1, 0), y)ϕ2(y) dy. It follows that

ϕ12(x1, 0) =

∫
D\B

P1((x1, 0), y)ϕ2(y) dy

=

∫
D\B

A((x1, 0), y)ϕ2(y) dy +

∫
D\B

E((x1, 0), y)ϕ2(y) dy.

Take x1 =
√
r − s (we have

√
r − s < r1/2 ≤ r/8). We have∫

D\B
A((x1, 0), y)ϕ2(y) dy =

r − x1

(s2 − (x1 − r)2)

∫
D\B

P ((x1, 0), y)ϕ2(y) dy.

By Lemma 3.2 we get∣∣∣∣∣
∫
D\B

P ((x1, 0), y)ϕ2(y) dy

∣∣∣∣∣ = |ϕ2(x1, 0)| ≤ cx1/2
1 | log x1|.

Since (r − x1)(s2 − (x1 − r)2)−1 ≈ x−1
1 we obtain∣∣∣∣∣

∫
D\B

A((x1, 0), y)ϕ2(y) dy

∣∣∣∣∣ ≤ cx−1/2
1 | log x1|,

for x1 =
√
r − s.

Let f1, D1, D2, D3 be such as in the proof of Lemma 3.7. By Lemma 2.2 we have for
y ∈ D1 ∪D2

ϕ2(y) = cosα(y)
∂ϕ

∂ ~T
(y)− sinα(y)

∂ϕ

∂~n
(y).
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By the arguments from the proof of Lemma 3.7 we have for y ∈ D1 ∪D2∣∣∣∣cosα(y)
∂ϕ

∂ ~T
(y)

∣∣∣∣ ≤ c(y1 − f(y2))1/2| log(y1 − f(y2))|

≤ cy
1/2
1 | log y1|,∣∣∣∣sinα(y)

∂ϕ

∂~n
(y)

∣∣∣∣ ≤ cy2(y1 − f(y2))−1/2.

Similarly like in the proofs of Lemmas 3.7 and 3.8 we obtain the following estimates∣∣∣∣∫
D1

E((x1, 0), y) cosα(y)
∂ϕ

∂ ~T
(y) dy

∣∣∣∣
≤ cx

−5/2
1

∫ x1

−x1
dy2

∫ f1(y2)

f(y2)
dy1(−y1 + f1(y2))−1/2y

1/2
1 | log y1| ≤ cx1/2

1 | log x1|.

Here we used the following facts y
1/2
1 | log y1| ≤ cy2| log y2| ≤ cx1| log x1|,

∫ f1(y2)
f(y2) (−y1 +

f1(y2))−1/2 dy1 ≤ cf1/2
1 (y2) ≤ cy2 ≤ cx1.

Using similar arguments we get∣∣∣∣∫
D2

E((x1, 0), y) cosα(y)
∂ϕ

∂ ~T
(y) dy

∣∣∣∣
≤ cx

1/2
1

∫ r/2

x1

dy2 y
−4
2

∫ f1(y2)

f(y2)
dy1(−y1 + f1(y2))−1/2y

1/2
1 | log y1|(x1 + y1)

≤ cx
1/2
1 | log x1|.

By the same arguments as in (25), (26) one can easily obtain∣∣∣∣∫
D1

E((x1, 0), y)y2(y1 − f(y2))−1/2 dy

∣∣∣∣ ≤ cx−1/2
1 ,

∣∣∣∣∫
D2

E((x1, 0), y)y2(y1 − f(y2))−1/2 dy

∣∣∣∣ ≤ cx−1/2
1 + cx

1/2
1 | log x1|,

By Lemmas 2.3, 3.4 we obtain∣∣∣∣∫
D3

E((x1, 0), y)ϕ2(y) dy

∣∣∣∣ ≤ cx1/2
1

∫
D3

δ
−1/2
B (y)δ

−1/2
D (y) dy ≤ cx1/2

1 .

It follows that |ϕ12(x1, 0)| ≤ cx−1/2
1 | log x1|, where c does not depend on s and x1 =

√
r − s.

Since s ∈ (r − (r1/2)2, r) we get |ϕ12(x1, 0)| ≤ cx−1/2
1 | log x1|, x1 ∈ (0, r1/2]. �

By Lemmas 2.2, 3.7, 3.8, 3.9 and Corollary 3.3 we obtain

Corollary 3.10. There exists r2 ∈ (0, r0/4], r2 = r2(Λ) such that for any y ∈ D, δD(y) ≤
r2 we have (22), (23), (24) and

∂2ϕ

∂~n2
(y) ≈ −δ−3/2

D (y),

∂2ϕ

∂ ~T 2
(y) ≈ −δ−1/2

D (y),∣∣∣∣ ∂2ϕ

∂~n∂ ~T
(y)

∣∣∣∣ ≤ cδ
−1/2
D (y)| log(δD(y))|.
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Lemma 3.11. There exists r3 ∈ (0, r0/4], r3 = r3(Λ) such that for any y = (y1, y2) ∈
B((r3, 0), r3) we have

|ϕ2(y)| ≤ c(y
1/2
1 | log y1|+ |y2|y−1/2

1 ), (27)

|ϕ12(y)| ≤ c(y
−1/2
1 | log y1|+ |y2|y−3/2

1 ), (28)

|ϕ22(y)| ≈ −y−1/2
1 (29)

and for any y = (y1, y2) ∈Wr3 we have

ϕ1(y) ≈ δ−1/2
D (y), (30)

where Wr3 = {(y1, y2) : y2 ∈ [−r3, r3], y1 ∈ (f(y2), r3]}.
Proof. We may assume that y2 > 0. Let r ∈ (0, r2] where r2 is the constant from Corollary
3.10 (recall that r2 ≤ r0/4). Let y = (y1, y2) ∈ B((r, 0), r) with y2 > 0. By Lemma 2.2 we
have sinα(y) ≈ y2, cosα(y) ≈ c. We also have δD(y) ≈ y1 and y2

2 ≤ cy1.

By Corollary 3.10 we get ∂ϕ
∂~n (y) ≈ −δ−1/2

D (y) ≈ −y−1/2
1 ,

∣∣∣ ∂ϕ
∂ ~T

(y)
∣∣∣ ≤ cδ1/2

D (y)| log(δD(y))| ≤
cy

1/2
1 | log y1|. Using this and the formula for ϕ2 from Lemma 2.2 we get (27).
By Corollary 3.10 we have∣∣∣∣ ∂2ϕ

∂~n∂ ~T
(y)

∣∣∣∣ ≤ cδ−1/2
D (y)| log(δD(y))| ≤ cy−1/2

1 | log y1|,∣∣∣∣∂2ϕ

∂~n2
(y)− ∂2ϕ

∂ ~T 2
(y)

∣∣∣∣ ≤ cδ−3/2
D (y) ≤ cy−3/2

1 .

Using this and the formula for ϕ12 from Lemma 2.2 we get (28).

By Corollary 3.10 we have ∂2ϕ

∂ ~T 2
(y) ≈ −δ−1/2

D (y) ≈ −y−1/2
1 , ∂2ϕ

∂~n2 (y) ≈ −δ−3/2
D (y) ≈

−y−3/2
1 . sin2 α(y) ≈ y2

2 ≤ cy1,∣∣∣∣sinα(y) cosα(y)
∂2ϕ

∂~n∂ ~T
(y)

∣∣∣∣ ≤ cy2y
−1/2
1 | log y1| ≤ c| log y1|.

Using this and the formula for ϕ22 from Lemma 2.2 we get (29) for sufficiently small r.
By (22), (23) and the formula for ϕ1 from Lemma 2.2 we get (30) for sufficiently small

r. �

We have (−∆)1/2ϕ(x) = 1 for x ∈ D. We need to estimate (−∆)1/2ϕ(x) for x ∈ (D)c.

For such x we have (−∆)1/2ϕ(x) = −(2π)−1
∫
D

ϕ(y)
|y−x|3 dy.

Lemma 3.12. Let x = (−x1, 0), x1 > 0. We have∣∣∣(−∆)1/2ϕ(x)
∣∣∣ ≈ δ−1/2

D (x)(1 + |x|)−5/2.

Proof. Put r = r0. When x1 ∈ (−∞,−r/2) we have∫
D

ϕ(y)

|y − x|3 dy ≈ |x|
−3 ≈ δ−1/2

D (x)(1 + |x|)−5/2.

When x1 ∈ [−r/2, 0) we obtain uisng Lemma 2.6∫
D

ϕ(y)

|y − x|3 dy ≈
∫
D∩B(0,δD(x))

δ
−5/2
D (x) dy +

∫
D∩(B(0,r/2)\B(0,δD(x)))

|y|−5/2 dy

+

∫
D∩Bc(0,r/2)

|y|−5/2 dy ≈ δ−1/2
D (x).

�

By Lemma 3.12 we obtain immediately
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Corollary 3.13. For any x ∈ (D)c we have∣∣∣(−∆)1/2ϕ(x)
∣∣∣ ≈ δ−1/2

D (x)(1 + |x|)−5/2.

4. Estimates of derivatives of u near ∂D × {0}
In this section we study the behaviour of uij near ∂D×{0}. The ultimate aim of these

estimates is to control determinants of Hessian matrices of the function u and the function
v(ε,D) (which is equal to u plus a small auxiliary harmonic function, for a precise definition
see Section 6) near ∂D × {0}. The estimates are quite long and technical because uij are
singular near ∂D × {0} and their behaviour is quite complicated.

In the whole section we fix C1 > 0, R1 > 0, κ2 ≥ κ1 > 0, D ∈ F (C1, R1, κ1, κ2)
and x0 ∈ ∂D. We put Λ = {C1, R1, κ1, κ1}. ϕ is the solution of (1-2) for D and u
is the harmonic extension of ϕ given by (6-10). Unless it is otherwise stated we fix
a 2-dimensional coordinate system CSx0 and notation as in Lemma 2.2 (see Figure 1).
In particular x0 is (0, 0) in CSx0 coordinates. To study u we also use a 3-dimensional
Cartesian coordinate system 0x1x2x3, see Figure 4, which is formed (roughly speaking)
by adding 0x3 axis to the above 2-dimensional coordinate system. Let us recall that in
the whole section we use convention stated in Remark 2.9.

Put r = r1 ∧ r2 ∧ r3 ∧ f(r0/4) ∧ f(−r0/4), where r0, r1, r2, r3 are the constants from
Lemma 2.2, Corollary 3.3, Corollary 3.10 and Lemma 3.11. Note that f(r0/4)∧f(−r0/4) ≥
c3r

2
0/16, where c3 is a constant from Lemma 2.2, c3r

2
0/16 depends only on Λ. Let us define

f1 : [−r, r]→ R by f1(y2) = r−
√
r2 − y2

2 and g1 : [0, r]→ R by g1(y1) =
√
r2 − (y1 − r)2

(the graphs of f1, g1 are parts of the circle {(y1, y2) : (y1−r)2+y2
2 = r2}). For any h ∈ (0, r]

we put (see Figure 4):

S1(h) = {(x1, x2, x3) : x1 = −h, x2 = 0, x3 ∈ (0, h/4]},
S2(h) = {(x1, x2, x3) : x1 = −h, x2 = 0, x3 ∈ (h/4, h]}

∪ {(x1, x2, x3) : x1 ∈ (−h, 0], x2 = 0, x3 = h},
S3(h) = {(x1, x2, x3) : x1 ∈ (0, h], x2 = 0, x3 = h}

∪ {(x1, x2, x3) : x1 = h, x2 = 0, x3 ∈ (h/4, h]},
S4(h) = {(x1, x2, x3) : x1 = h, x2 = 0, x3 ∈ (0, h/4]}.

The main tool which we use in this section is the following formula

u(x) =

∫
D
K(x1 − y1, x2 − y2, x3)ϕ(y1, y2) dy1 dy2.
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To obtain estimates of uij we differentiate under the integral sign in the above formula.
The results concerning estimates of uij are divided into 6 propositions. In the proof of
Proposition 4.1 we use the formula

u22(x) =

∫
D
K2(x1 − y1, x2 − y2, x3)ϕ2(y1, y2) dy1 dy2,

(for brevity we simply write u22 =
∫
DK2ϕ2), the estimates of ∂ϕ

∂~n , ∂ϕ

∂ ~T
from Corollary

3.3 and the estimate of |∇ϕ| from Lemma 3.4. In this proof we use also the formula
ϕ2(y1, y2)−ϕ2(y1,−y2) = 2y2ϕ22(y1, ξ) and the estimate of ϕ22 from Lemma 3.11. In the
proof of Proposition 4.2 (which is the easiest result of this section) we use formulas u11 =∫
DK11ϕ, u13 =

∫
DK13ϕ and the estimate ϕ(x) ≤ cδ

1/2
D (x). In the proof of Proposition

4.3 we use formulas u11 =
∫
DK1ϕ1, u13 =

∫
DK3ϕ1, the estimate of ϕ1 from Lemma

3.11 and the estimate of |∇ϕ| from Lemma 3.4. The proof of Proposition 4.4 is based on
a different idea than the proofs of previous propositions. Namely, we use the fact that
u3(y1, y2, 0) = −(−∆)1/2ϕ(y1, y2), for (y1, y2) /∈ ∂D. We use also formulas u13 =

∫
R2 K1u3,

u33 =
∫
R2 K3u3 and the estimate of |(−∆)1/2ϕ| from Corollary 3.13. In the proof of

Proposition 4.5 we use formulas u12 =
∫
DK12ϕ, u23 =

∫
DK23ϕ, ϕ(y1, y2)− ϕ(y1,−y2) =

2y2ϕ2(y1, ξ), the estimate of ϕ(x) from Lemma 2.6 and the estimate of ϕ2 from Lemma
3.11. In the proof we use also the formula ϕ(z1 +h, z2)−ϕ(−z1 +h, z2)−ϕ(z1 +h,−z2) +
ϕ(−z1 + h,−z2) = 4z1z2ϕ12(ξ1 + h, ξ2) and the estimate of ϕ12 from Lemma 3.11. The
most difficult result of this section is Proposition 4.6. In this proposition we study u23

on S4(h) using two different formulas: u23 =
∫
R2 K2u3 and u23 =

∫
DK23ϕ. We use the

estimate of |(−∆)1/2ϕ| from Corollary 3.13, estimates of ϕ2, ϕ12, ϕ22 from Lemma 3.11
and the estimate of ϕ(x) from Lemma 2.6. In Lemma 4.7 we obtain results concerning
ui3(x1, x2, 0) for i = 1, 2, 3 and (x1, x2) ∈ D.

In this section we use only these geometric properties of a domain D, which are stated
in Lemmas 2.2, 2.3 (and additionally the fact that D is convex and D ⊂ B(0, 1)). Let
us recall that all constants in Lemmas 2.2, 2.3 depend only on Λ. We use only these
inequalities of ϕ, ϕi, ϕij which are stated in Section 3 and in Lemma 2.6. The constants
in these inequalities depend only on Λ. Therefore all constants in estimates of uij obtained
in Section 4 depend only on Λ.

Proposition 4.1. There exists h0 ∈ (0, r/8], h0 = h0(Λ) such that for any h ∈ (0, h0] we

have u22(x) ≈ −x3h
−3/2 for x ∈ S1(h) ∪ S2(h) ∪ S3(h), u22(x) ≈ −h−1/2 for x ∈ S4(h).

Proof. Let h ∈ (0, r/8]. We have

u22(x) =

∫
D
K2(x1 − y1,−y2, x3)ϕ2(y1, y2) dy1 dy2. (31)

Put (see Figure 5)

D1 = {(y1, y2) : y1 ∈ [f1(h), h], y2 ∈ [−g1(y1), g1(y1)]},
D2 = {(y1, y2) : y1 ∈ (h, r], y2 ∈ [−g1(y1), g1(y1)]},
D3 = {(y1, y2) : y2 ∈ [−h, h], y1 ∈ (f(y2), f1(h))},
D4 = {(y1, y2) : y2 ∈ [−r/2,−h] ∪ [h, r/2], y1 ∈ (f(y2), f1(y2))},
D5 = D \ (D1 ∪D2 ∪D3 ∪D4).

For i = 1, 2, 3, 4 we also put Di+ = {(y1, y2) ∈ Di : y2 > 0}, Di− = {(y1, y2) ∈ Di : y2 <
0}.

Note that f1(h) ≤ h2/r ≤ h/4.
We will estimate (31). The most important is

∫
D1∪D2

K2ϕ2. By Lemma 3.11 for y ∈
D1+ ∪ D2+ we have ϕ2(y1, y2) − ϕ2(y1,−y2) = 2y2ϕ22(y1, ξ) ≈ −y2y

−1/2
1 , where ξ ∈
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(−y2, y2). It follows that∫
D1∪D2

K2(x1 − y1,−y2, x3)ϕ2(y1, y2) dy1 dy2

= cx3

∫
D1+∪D2+

y2

((x1 − y1)2 + y2
2 + x2

3)5/2
(ϕ2(y1, y2)− ϕ2(y1,−y2)) dy1 dy2

≈ cx3

∫
D1+∪D2+

−y2
2y
−1/2
1

((x1 − y1)2 + y2
2 + x2

3)5/2
dy1 dy2.

We have ∫
D1+

−y2
2y
−1/2
1

((x1 − y1)2 + y2
2 + x2

3)5/2
dy1 dy2

≈ 1

h5

∫ h

f1(h)
dy1 y

−1/2
1

∫ h

0
dy2 (−y2

2) +

∫ h

f1(h)
dy1 y

−1/2
1

∫ g1(y1)

h
dy2
−y2

2

y5
2

.

We have f1(y2) = y2
2(r+ (r2− y2

2)1/2)−1 and g1(y1) = y
1/2
1 (2r− y1)1/2, so c1y

2
2 ≤ f1(y2) ≤

c2y
2
2 and c3y

1/2
1 ≤ g1(y1) ≤ c4y

1/2
1 and constants c1, c2, c3, c4 depend only on Λ. Hence

the last expression is comparable to −h−3/2 (with constants depending only on Λ).
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By similar arguments we have

∫
D2+

−y2
2y
−1/2
1

((x1 − y1)2 + y2
2 + x2

3)5/2
dy1 dy2

≈
∫ r

h
dy1

∫ y1

0
dy2
−y2

2y
−1/2
1

y5
1

+

∫ r

h
dy1

∫ g1(y1)

y1

dy2
−y2

2y
−1/2
1

y5
2

≈ −h−3/2.

It follows that
∫
D1∪D2

K2ϕ2 ≈ −x3h
−3/2.

Now we will estimate
∫
D3∪D4

K2ϕ2. It is sufficient to estimate
∫
D3+∪D4+

K2ϕ2. The

estimate
∫
D3−∪D4−

K2ϕ2 is the same. By Lemma 2.2 and Corollary 3.3 we get for y ∈
D3+ ∪D4+

|ϕ2(y)| =

∣∣∣∣cosα(y)
∂ϕ

∂ ~T
(y)− sinα(y)

∂ϕ

∂~n
(y)

∣∣∣∣
≤ cδ

1/2
D (y)| log δD(y)|+ cy2δ

−1/2
D (y)

≤ c(f−1(y1)− y2)1/2(f−1(y1))1/2| log((f−1(y1)− y2)f−1(y1))|
+ cy2(f−1(y1)− y2)−1/2(f−1(y1))−1/2.

It follows that ∣∣∣∣∣
∫
D3+

K2(x1 − y1,−y2, x3)ϕ2(y1, y2) dy1 dy2

∣∣∣∣∣
≤ cx3

h5

∫ f1(h)

0
dy1

∫ f−1(y1)

0
dy2y2|ϕ2(y1, y2)|

≤ cx3

h5

∫ f1(h)

0
dy1

∫ f−1(y1)

0
dy2(f−1(y1)− y2)1/2(f−1(y1))1/2

×| log((f−1(y1)− y2)f−1(y1))|y2

+
cx3

h5

∫ f1(h)

0
dy1

∫ f−1(y1)

0
dy2(f−1(y1)− y2)−1/2(f−1(y1))−1/2y2

2.

By substituting w = f−1(y1)− y2 and using y2 = f−1(y1)−w ≤ f−1(y1), f−1(y1) ≈ y1/2
1 ,

f1(h) ≤ ch2 this is bounded from above by

cx3

h5

∫ f1(h)

0
dy1

∫ f−1(y1)

0
dww1/2(f−1(y1))3/2| log(wf−1(y1))|

+
cx3

h5

∫ f1(h)

0
dy1

∫ f−1(y1)

0
dww−1/2(f−1(y1))3/2

≤ cx3| log h|+ cx3h
−1.

In the above estimate we used the inequality f−1(y1) ≤ cy
1/2
1 . This follows from Lemma

2.2, property 3, so the constant c depends only on Λ.
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In the same way we get∣∣∣∣∣
∫
D4+

K2(x1 − y1,−y2, x3)ϕ2(y1, y2) dy1 dy2

∣∣∣∣∣
≤ cx3

∫ r/2

h
dy2

∫ f1(y2)

f(y2)
dy1

y2

y5
2

|ϕ2(y1, y2)|

≤ cx3

∫ f1(r/2)

f(h)
dy1

∫ f−1(y1)

g1(y1)
dy2y

−4
2 (f−1(y1)− y2)1/2(f−1(y1))1/2

×| log((f−1(y1)− y2)f−1(y1))|

+ cx3

∫ f1(r/2)

f(h)
dy1

∫ f−1(y1)

g1(y1)
dy2y

−3
2 (f−1(y1)− y2)−1/2(f−1(y1))−1/2.

Similarly like in the estimate
∫
D3+

K2ϕ2 using substitution w = f−1(y1) − y2 we obtain

that it is bounded from above by cx3| log h|2 + cx3h
−1. By Lemma 3.4 we get∣∣∣∣∫

D5

K2(x1 − y1,−y2, x3)ϕ2(y1, y2) dy1 dy2

∣∣∣∣ ≤ cx3

∫
D5

δ
−1/2
D (y) dy.

By Lemma 2.3 this is bounded from above by cx3. We finally obtained
∫
D1∪D2

K2ϕ2 ≈
−x3h

−3/2 and
∣∣∣∫D3∪D4∪d5 K2ϕ2

∣∣∣ ≤ cx3h
−1, where all constants depend only on Λ. It is

clear that one can choose h0 = h0(Λ) such that for any h ∈ (0, h0] we have u22(x) =∫
D1∪...∪D5

K2ϕ2 ≈ −x3h
−3/2 for x ∈ S1(h) ∪ S2(h) ∪ S3(h).

Now we estimate u22(x) for x ∈ S4(h). Put A = B((h, 0), h/2), A+ = {y ∈ A : y2 > 0},
A1+ = {y ∈ B((h, 0), x3) : y2 > 0}, A2+ = A+ \ A1+. By similar arguments as above we

obtain
∫
D\AK2ϕ2 ≈ −x3h

−3/2 and for y ∈ A we get ϕ2(y1, y2)−ϕ2(y1,−y2) ≈ −y2y
−1/2
1 ≈

−y2h
−1/2. Note that for x ∈ S4(h) we have x = (h, 0, x3), where x3 ∈ (0, h/4]. It follows

that ∫
A
K2(x1 − y1,−y2, x3)ϕ2(y1, y2) dy1 dy2

=

∫
A+

K2(x1 − y1,−y2, x3)(ϕ2(y1, y2)− ϕ2(y1,−y2)) dy1 dy2

≈ −x3h
−1/2

∫
A1+∪A2+

y2
2

((h− y1)2 + y2
2 + x2

3)5/2
dy1 dy2

≈ −h−1/2

x4
3

∫ x3

0
ρ3 dρ− x3h

−1/2

∫ h/2

x3

ρ−2 dρ ≈ −h−1/2.

�

Proposition 4.2. There exists h0 ∈ (0, r/8], h0 = h0(Λ) such that for any h ∈ (0, h0] we

have |u11(x)| ≤ cx3h
−5/2, |u33(x)| ≤ cx3h

−5/2, |u13(x)| ≤ ch−3/2 for x ∈ S1(h) ∪ S2(h) ∪
S3(h).

Proof. Let h ∈ (0, r/8].
We have

u11(x) =

∫
D
K11(x1 − y1,−y2, x3)ϕ(y1, y2) dy1 dy2,
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Put D1 = D ∩ B(0, h). By Lemma 2.6 for y ∈ D1 we have ϕ(y) ≤ ch1/2, for y ∈ D \D1

we have ϕ(y) ≤ c(dist(0, y))1/2. It follows that∣∣∣∣∫
D1

K11ϕ

∣∣∣∣ ≤ cx3
h2

h7
h1/2

∫
D1

dy ≈ cx3h
−5/2,∣∣∣∣∣

∫
D\D1

K11ϕ

∣∣∣∣∣ ≤ cx3

∫ ∞
h

ρ2

ρ7
ρ1/2ρ dρ ≈ cx3h

−5/2.

Since u11(x) + u22(x) + u33(x) = 0 and by Lemma 4.1 u22(x) ≈ −x3h
−3/2 for x ∈

S1(h) ∪ S2(h) ∪ S3(h) we get |u33(x)| ≤ cx3h
−5/2.

Similarly we have

u13(x) =

∫
D
K13(x1 − y1,−y2, x3)ϕ(y1, y2) dy1 dy2,

∣∣∣∣∫
D1

K13ϕ

∣∣∣∣ ≤ ch
h2

h7
h1/2

∫
D1

dy ≈ ch−3/2,∣∣∣∣∣
∫
D\D1

K13ϕ

∣∣∣∣∣ ≤ c

∫ ∞
h

ρ3

ρ7
ρ1/2ρ dρ ≈ ch−3/2.

�

Proposition 4.3. There exists h0 ∈ (0, r/8], h0 = h0(Λ) such that for any h ∈ (0, h0] we

have u13(x) ≈ h−3/2 for x ∈ S1(h), u11(x) ≈ h−3/2, u33(x) ≈ −h−3/2 for x ∈ S2(h).

Proof. Let h ∈ (0, r/8].
We have

u13(x) =

∫
D
K3(x1 − y1,−y2, x3)ϕ1(y1, y2) dy1 dy2,

K3(x1 − y1,−y2, x3) = CK
(x1 − y1)2 + y2

2 − 2x2
3

((x1 − y1)2 + y2
2 + x2

3)5/2
.

Put D1 = {(y1, y2) : y2 ∈ (−r, r), y1 ∈ (f(y2), r)}. By Lemma 3.11 we get ϕ1(y) ≈
δ
−1/2
D (y) for y ∈ D1. We also have K3(x1− y1,−y2, x3) ≥ 0 for y ∈ D1 and x ∈ S1(h). Let
β(y) be the acute angle between 0y and y1 axis. Put D2 = {(y1, y2) : |y| ∈ (h, r), β(y) ∈
[0, π/6)}. Clearly, D2 ⊂ D1. For y ∈ D2 we have ϕ1(y) ≈ δ

−1/2
D (y) ≈ |y|−1/2 and

K3(x1 − y1,−y2, x3) ≥ c|y|−3. It follows that∫
D1

K3ϕ1 ≥
∫
D2

|y|−7/2 dy ≈ h−3/2.

By Lemmas 3.4 and 2.3 we get∣∣∣∣∣
∫
D\D1

K3ϕ1

∣∣∣∣∣ ≤ c
∫
D\D1

δ
−1/2
D (y) dy ≤ c.

Hence u13(x) ≥ ch−3/2 for x ∈ S1(h) and sufficiently small h. By Proposition 4.2 |u13(x)| ≤
ch−3/2 so u13(x) ≈ h−3/2.

We have

u11(x) =

∫
D
K1(x1 − y1,−y2, x3)ϕ1(y1, y2) dy1 dy2,

K1(x1 − y1,−y2, x3) = 3CK
x3(y1 − x1)

((x1 − y1)2 + y2
2 + x2

3)5/2
.



ON CONCAVITY OF SOLUTIONS OF THE EQUATION (−∆)1/2ϕ = 1 27

A4

A4A4

A1A2

A3

A3

A5

A5

D

A6

A6

A6

y1

r

−r

h

−h

y2

Figure 6

We have K1(x1 − y1,−y2, x3) ≥ 0 for y ∈ D1 and x ∈ S2(h). For y ∈ D2 and x ∈ S2(h)
we have K1(x1 − y1,−y2, x3) ≥ ch|y|−4. It follows that∫

D1

K1ϕ1 ≥ ch
∫
D2

|y|−9/2 dy ≈ h−3/2.

By Lemmas 3.4 and 2.3 we get
∣∣∣∫D\D1

K1ϕ1

∣∣∣ ≤ c. Hence u11(x) ≥ ch−3/2 for x ∈ S2(h)

and sufficiently small h. By Proposition 4.2 |u11(x)| ≤ ch−3/2 so u11(x) ≈ h−3/2. Since

u11(x) + u22(x) + u33(x) = 0 and by Proposition 4.1 u22(x) ≈ −h−1/2 for x ∈ S2(h) we

get u33(x) ≈ −h−3/2. �

Proposition 4.4. There exists h0 ∈ (0, r/8], h0 = h0(Λ) such that for any h ∈ (0, h0] we

have |u13(x)| ≤ ch−3/2 for x ∈ S4(h), u13(x) ≈ −h−3/2 for x ∈ S3(h), u13(x) ≤ −cx3h
−5/2

for x ∈ S4(h), u33(x) ≈ h−3/2, u11(x) ≈ −h−3/2 for x ∈ S4(h).

Proof. Let h ∈ (0, r/8].
We have

u13(x) =

∫
R2

K1(x1 − y1,−y2, x3)u3(y1, y2, 0) dy1 dy2,

K1(x1 − y1,−y2, x3) = 3CK
x3(y1 − x1)

((x1 − y1)2 + y2
2 + x2

3)5/2
.

For y ∈ D we have u3(y1, y2, 0) = −1 and for y ∈ (D)c by Corollary 3.13

u3(y1, y2, 0) = −(−∆)1/2ϕ(y) ≈ (1 + |y|−5/2)δ
−1/2
D (y).
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Put (see Figure 6)

A1 = {y ∈ B(0, h) : y1 ≤ 0},
A2 = {y ∈ B(0, r) \B(0, h) : y1 < 0, |y2| ≤ |y1|},
A3 = {y ∈ B(0, r) \B(0, h) : y1 ≤ 0, |y2| ≥ |y1|},
A4 = {y : y2 ∈ [−h, h], y1 ∈ (0, f(y2)]},
A5 = {y : y2 ∈ (h, r] ∪ [−r,−h), y1 ∈ (0, f(y2)]},
A6 = Dc \ (A1 ∪A2 ∪A3 ∪A4 ∪A5).

Clearly A1, A2, A3, A4, A5, A6 ⊂ Dc. We also put D1 = B((h, 0), h/2).
Let x ∈ S3(h) ∪ S4(h). We have∣∣∣∣∫

A1

K1u3

∣∣∣∣ ≤ ch−3

∫
A1

δ
−1/2
D (y) dy ≤ ch−3/2,∫

A2

K1u3 ≈ −x3

∫
A2

|y|−9/2 dy ≈ −x3h
−5/2,∣∣∣∣∫

A3

K1u3

∣∣∣∣ ≤ ch∫ r

h/
√

2
dy2

∫ 0

−y2
dy1 |y1|−1/2y−4

2 ≤ ch−3/2.

For x ∈ S3(h)∪S4(h) and y ∈ A4 we estimate |y1−x1| ≤ y1 +h ≤ ch, f(y2) ≤ cy2
2. Hence∣∣∣∣∫

A4

K1u3

∣∣∣∣ ≤ cx3h
−4

∫ h

−h
dy2

∫ f(y2)

0
dy1 (−y1 + f(y2))−1/2 ≤ cx3h

−2.

For x ∈ S3(h) ∪ S4(h) and y ∈ A5 we estimate |y1 − x1| ≤ y1 + h ≤ c|y2|, f(y2) ≤ cy2
2.

Hence ∣∣∣∣∫
A5

K1u3

∣∣∣∣ ≤ cx3

∫ r

h
dy2

∫ f(y2)

0
dy1 (−y1 + f(y2))−1/2y−4

2 ≤ cx3h
−2.

We also have ∣∣∣∣∫
A6

K1u3

∣∣∣∣ ≤ cx3

∫
A6

|y|−13/2δ
−1/2
D (y) dy ≤ cx3.

For x ∈ S3(h) we have∣∣∣∣∫
D1

K1u3

∣∣∣∣ =

∣∣∣∣∫
D1

K1

∣∣∣∣ ≤ cx3h
−4

∫
D1

dy ≈ x3h
−2.

For x ∈ S4(h) we have∣∣∣∣∫
D1

K1u3

∣∣∣∣ = cx3

∫
D1

y1 − h
((y1 − h)2 + y2

2 + x2
3)5/2

dy1 dy2 = 0.

For x ∈ S3(h) ∪ S4(h) we also have∣∣∣∣∣
∫
D\D1

K1u3

∣∣∣∣∣ ≤ cx3

∫
D\D1

((y1 − h)2 + y2
2)−2 dy ≤ cx3h

−2.

It follows that for x ∈ S3(h) ∪ S4(h)

|u13(x)| =
∣∣∣∣∫
R2

K1u3

∣∣∣∣ ≤ ch−3/2, (32)

(for x ∈ S3(h) such estimate follows also from Proposition 4.2).
Now note that K1(x1 − y1,−y2, x3) ≤ 0 and u3(y1, y2, 0) ≥ 0 for x ∈ S3(h) ∪ S4(h) and

y ∈ A1 ∪A3. So
∫
A1∪A3

K1u3 ≤ 0. It follows that for x ∈ S3(h) ∪ S4(h) we have

u13(x) =

∫
R2

K1u3 ≤
∫
A2∪A4∪A5∪A6∪D

K1u3 ≤ −cx3h
−5/2 + c1x3h

−2.
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It is clear that one can choose sufficiently small h0 = h0(Λ) such that for any h ∈ (0, h0]

and x ∈ S3(h) ∪ S4(h) we have u13(x) ≤ −c2x3h
−5/2. Using this and (32) we also obtain

u13(x) ≈ −h−3/2 for any h ∈ (0, h0] and x ∈ S3(h).
Now we will estimate u33(x) for x ∈ S4(h). We have

u33(x) =

∫
R2

K3(x1 − y1,−y2, x3)u3(y1, y2, 0) dy1 dy2,

K3(x1 − y1,−y2, x3) = CK
(x1 − y1)2 + y2

2 − 2x2
3

((x1 − y1)2 + y2
2 + x2

3)5/2
.

For x ∈ S4(h) and y ∈ Dc we have K3(x1 − y1,−y2, x3) > 0, u3(y1, y2, 0) ≈ (1 +

|y|−5/2)δ
−1/2
D (y). For y ∈ D we have u3(y1, y2, 0) = −1. We have∣∣∣∣∫

A1∪A4

K3u3

∣∣∣∣ ≤ c

h3

∫
A1∪A4

δ
−1/2
D (y) dy

≤ c

h3

∫ h

0
dy2

∫ f(y2)

−h
dy1 (−y1 + f(y2))−1/2 ≈ h−3/2,

∫
A2

K3u3 ≈
∫
A2

|y|−7/2 dy ≈ h−3/2,

∣∣∣∣∫
A3∪A5

K3u3

∣∣∣∣ ≤ c∫ r

h/
√

2
dy2

∫ f(y2)

−y2
dy1

(−y1 + f(y2))−1/2

y3
2

≈ h−3/2,

∣∣∣∣∫
A6

K3u3

∣∣∣∣ ≤ c∫
A6

|y|−11/2δ
−1/2
D (y) dy ≤ c,∣∣∣∣∣

∫
D\D1

K3u3

∣∣∣∣∣ ≤ c
∫
D\D1

((y1 − h)2 + y2
2)−3/2 dy ≤ ch−1.

The integral over D1 we compute directly. Recall that D1 = B((h, 0), h/2) and x =
(x1, x2, x3) ∈ S4(h) so x1 = h, x2 = 0, x3 ∈ (0, h/4]. We have∫

D1

K3(x1 − y1,−y2, x3)u3(y1, y2, 0) dy1 dy2 = CK

∫
D1

(h− y1)2 + y2
2 − 2x2

3

((h− y1)2 + y2
2 + x2

3)5/2
dy1 dy2.

(33)
Let us introduce polar coordinates h − y1 = ρ cos θ, y2 = ρ sin θ. Then (33) equals

2πCK
∫ h/2

0
ρ2−2x23

(ρ2+x23)5/2
ρ dρ. By substitution t = ρ2 this is equal to πCK

∫ h2/4
0

t−2x23
(t+x23)5/2

dt.

By elementary calculations this is equal to −πCKh2
2(h2/4+x23)3/2

. Hence
∣∣∣∫D1

K3u3

∣∣∣ ≤ c/h.

It follows that |u33(x)| ≤ ch−3/2. Since for x ∈ S4(h) and y ∈ (D)c we have K3(x1 −
y1,−y2, x3) > 0 and u3(y1, y2, 0) > 0 we get

u33(x) =

∫
R2

K3u3 ≥
∫
A2∪D

K3u3 ≥
∫
A2

K3u3 −
∣∣∣∣∫
D
K3u3

∣∣∣∣ ≥ ch−3/2 − c1h
−1.

It follows that u33(x) ≈ h−3/2 for x ∈ S4(h) and sufficiently small h. Since u11(x) +

u22(x) + u33(x) = 0 and by Proposition 4.1 u22(x) ≈ −h−1/2 for x ∈ S4(h) we get

u11(x) ≈ −h−3/2. �

Proposition 4.5. There exists h0 ∈ (0, r/8], h0 = h0(Λ) such that for any h ∈ (0, h0] we

have |u12(x)| ≤ cx3h
−3/2| log h| for x ∈ S1(h)∪ S2(h)∪ S3(h), |u12(x)| ≤ ch−1/2| log h| for

x ∈ S4(h), |u23(x)| ≤ ch−1/2| log h| for x ∈ S1(h) ∪ S2(h) ∪ S3(h).
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Proof. Let h ∈ (0, r/8].
We have

u12(x) =

∫
D
K12(x1 − y1,−y2, x3)ϕ(y1, y2) dy1 dy2, (34)

K12(x1 − y1,−y2, x3) = −15CK
x3(x1 − y1)y2

((x1 − y1)2 + y2
2 + x2

3)7/2
.

Let D1, D2, D3, D4, D5 and Di+, Di− for i = 1, 2, 3, 4 be such as in the proof of Proposition
4.2. We have∫
D1∪D2

K12ϕ = −cx3

∫
D1+∪D2+

(x1 − y1)y2

((x1 − y1)2 + y2
2 + x2

3)7/2
(ϕ(y1, y2)− ϕ(y1,−y2)) dy1 dy2.

For y ∈ D1+ ∪ D2+ by Lemma 3.11 we get |ϕ(y1, y2) − ϕ(y1,−y2)| = |2y2ϕ2(y1, ξ)| ≤
cy2(y2y

−1/2
1 + y

1/2
1 | log y1|), where ξ ∈ (−y2, y2). Hence∣∣∣∣∫

D1

K12ϕ

∣∣∣∣ ≤ cx3

∫
D1+

|x1 − y1|
((x1 − y1)2 + y2

2 + x2
3)7/2

(y3
2y
−1/2
1 + y2

2y
1/2
1 | log y1|) dy1 dy2

≤ cx3h
−6

∫ h

0
dy1

∫ h

0
dy2(y3

2y
−1/2
1 + y2

2y
1/2
1 | log y1|)

+ cx3h

∫ h

0
dy1

∫ c1y
1/2
1

h
dy2(y−4

2 y
−1/2
1 + y−5

2 y
1/2
1 | log y1|)

≤ cx3h
−3/2| log h|.

Note that for y ∈ D2 we have |x1 − y1| ≤ cy1. We obtain∣∣∣∣∫
D2

K12ϕ

∣∣∣∣ ≤ cx3

∫
D2+

|x1 − y1|
((x1 − y1)2 + y2

2 + x2
3)7/2

(y3
2y
−1/2
1 + y2

2y
1/2
1 | log y1|) dy1 dy2

≤ cx3

∫ r

h
dy1

∫ y1

0
dy2(y3

2y
−13/2
1 + y2

2y
−11/2
1 | log y1|)

+ cx3

∫ r

h
dy1

∫ r

y1

dy2(y−4
2 y

1/2
1 + y−5

2 y
3/2
1 | log y1|)

≤ cx3h
−3/2| log h|.

By Lemma 2.6 for y ∈ D3∪D4 we have ϕ(y) ≤ cδ1/2
D (y) ≤ cy2. Note also that |x1−y1| ≤ 2h

for y ∈ D3 and |x1 − y1| ≤ h+ y1 for y ∈ D4. We get∣∣∣∣∫
D3

K12ϕ

∣∣∣∣ ≤ cx3h
−5

∫ h

0
dy2

∫ f1(h)

0
dy1y2 ≤ cx3h

−1,

∣∣∣∣∫
D4+

K12ϕ

∣∣∣∣ ≤ cx3

∫ r

h
dy2

∫ c1y22

0
dy1(h+ y1)y−5

2 ≤ cx3h
−1.

The estimate of
∣∣∣∫D4−K12ϕ

∣∣∣ is the same so
∣∣∣∫D4

K12ϕ
∣∣∣ ≤ cx3h

−1. Note that for y ∈ D5

we have |x1 − y1| ≤ cy1 and ϕ(y) ≤ c. Hence∣∣∣∣∫
D5

K12ϕ

∣∣∣∣ ≤ cx3

∫
Bc(0,c1r2)

y1|y2|
(y2

1 + y2
2)7/2

dy1 dy2 ≤ cx3.

For x ∈ S1(h) ∪ S2(h) ∪ S3(h) we have

u23(x) =

∫
D
K23(x1 − y1,−y2, x3)ϕ(y1, y2) dy1 dy2.

The proof of the estimate
∣∣∫
DK23ϕ

∣∣ ≤ ch−1/2| log h| is very similar to the proof of the

estimate
∣∣∫
DK12ϕ

∣∣ ≤ cx3h
−3/2| log h| and it is omitted.
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We have

u12(x) =

∫
D
K12(x1 − y1,−y2, x3)ϕ(y1, y2) dy1 dy2.

Put A = B((h, 0), h/2). By the same argument as above we obtain
∣∣∣∫D\AK12ϕ

∣∣∣ ≤
cx3h

−3/2| log h|. We have∣∣∣∣∫
A
K12ϕ

∣∣∣∣ =

∣∣∣∣cx3

∫
A

(y1 − h)y2

((y1 − h)2 + y2
2 + x2

3)7/2
ϕ(y1, y2) dy1 dy2

∣∣∣∣ .
By substitution z1 = y1 − h, z2 = y2 this is equal to∣∣∣∣∣cx3

∫
B(0,h/2)

z1z2

(z2
1 + z2

2 + x2
3)7/2

ϕ(z1 + h, z2) dz1 dz2

∣∣∣∣∣ =

∣∣∣∣cx3

∫
W

z1z2g(z1, z2)

(z2
1 + z2

2 + x2
3)7/2

dz1 dz2

∣∣∣∣ ,
(35)

where g(z1, z2) = ϕ(z1 + h, z2) − ϕ(−z1 + h, z2) − ϕ(z1 + h,−z2) + ϕ(−z1 + h,−z2) and
W = {z ∈ B(0, h/2) : z1 ≥ 0, z2 ≥ 0}. Note that for z ∈ W we have g(z1, z2) =
4z1z2ϕ12(ξ1 + h, ξ2), where ξ1 ∈ (−z1, z1), ξ2 ∈ (−z2, z2). By Lemma 3.11 we have for
z ∈W and ξ1, ξ2 as above

|ϕ12(ξ1 + h, ξ2)| ≤ ch−1/2| log h|+ cz2h
−3/2.

It follows that (35) is bounded from above by

cx3

∫
W

z2
1z

2
2(h−1/2| log h|+ z2h

−3/2)

(z2
1 + z2

2 + x2
3)7/2

dz1 dz2. (36)

Put W1 = {z : z1 ∈ [0, x3], z2 ∈ [0, x3]}, W2 = {z ∈ B(0, h/2) \ B(0, x3) : z1 ≥ 0, z2 ≥ 0}.
We have W ⊂W1 ∪W2. (36) is bounded from above by

cx3

∫
W1

z2
1z

2
2(h−1/2| log h|+ z2h

−3/2)

x7
3

dz1 dz2

+ cx3

∫
W2

z2
1z

2
2(h−1/2| log h|+ z2h

−3/2)

(z2
1 + z2

2)7/2
dz1 dz2

≤ ch−1/2| log h|.

�

Proposition 4.6. There exists h0 ∈ (0, r/8], h0 = h0(Λ) such that for any h ∈ (0, h0] we

have |u23(x)| ≤ ch−3/4| log h| for x ∈ S4(h).

Proof. Let h ∈ (0, r/8]. Put p = (−r, 0), recall that z = (r, 0). We have

u23(x) =

∫
R2

K2(x1 − y1,−y2, x3)u3(y1, y2, 0) dy1 dy2

=

∫
B(0,r/4)∩B(p,r)

K2u3 +

∫
(D∩B(0,r/4))\(B(p,r)∪B(z,r))

K2u3

+

∫
(Dc∩B(0,r/4))\(B(p,r)∪B(z,r))

K2u3 +

∫
B(0,r/4)∩B(z,r)

K2u3

+

∫
Bc(0,r/4)

K2u3 = I + II + III + IV + V.

Note that u3(y1, y2, 0) = −(−∆)1/2ϕ(y1, y2) for (y1, y2) ∈ R2 \ ∂D.
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Put A = B(0, r/4) ∩ B(p, r). For y ∈ A by Corollary 3.13 we get |(−∆)1/2ϕ(y)| ≤
cδ
−1/2
D (y) ≤ c|y1|−1/2. It follows that

|I| ≤ cx3

∫
A

y2|y1|−1/2

((h− y1)2 + y2
2 + x2

3)5/2
dy1 dy2

≤ cx3

∫ h

0
dy2

∫ −f1(y2)

−r/4
dy1

y2|y1|−1/2

h5
+ cx3

∫ r/4

h
dy2

∫ −f1(y2)

−r/2
dy1

y2|y1|−1/2

y5
2

≤ cx3h
−3.

We also have

|II| ≤ cx3

∫ h

0
dy2

∫ f1(y2)

0
dy1 y2h

−5 + cx3

∫ r/2

h
dy2

∫ f1(y2)

0
dy1 y2y

−5
2 ≤ cx3h

−1.

For y ∈ (Dc ∩ B(0, r/4)) \ (B(p, r) ∪ B(z, r)) by Corollary 3.13 we get |(−∆)1/2ϕ(y)| ≤
cδ
−1/2
D (y) ≈ (f(y2)− y1)−1/2. Hence

|III| ≤ cx3

∫ r/4

0
dy2

∫ f(y2)

−f1(y2)
dy1 (f(y2)− y1)−1/2 y2

h5 ∨ y5
2

.

For y2 ∈ (0, r/4) we have∫ f(y2)

−f1(y2)
(f(y2)− y1)−1/2 dy1 =

∫ f1(y2)+f(y2)

0
z−1/2 dz ≤ cy2.

It follows that

|III| ≤ cx3

∫ h

0

y2
2

h5
dy2 + cx3

∫ r/4

h

y2
2

y5
2

dy2 ≤
cx3

h2
.

Clearly

IV =

∫
B(0,r/4)∩B(z,r)

−cx3y2

((h− y1)2 + y2
2 + x2

3)5/2
dy1 dy2 = 0.

Using Corollary 3.13 we get

|V| ≤ cx3

∫
D
dy + cx3

∫
Dc

δD(y)−1/2

(1 + |y|)5/2
dy ≤ cx3.

It follows that for x ∈ S4(h) we have

|u23(x)| ≤ |I + II + III + IV + V| ≤ cx3

h3
. (37)

On the other hand we have for x ∈ S4(h)

u23(x) =

∫
D
K23(x1 − y1,−y2, x3)ϕ(y1, y2) dy1 dy2.

Put W = B((h, 0), h/2), W+ = {y ∈ W : y2 > 0}. For x ∈ S4(h) one may show∣∣∣∫D\W K23ϕ
∣∣∣ ≤ ch−1/2| log h|. The proof of this inequality is omitted. It is very similar to

the proof of the estimate
∣∣∣∫D\W K12ϕ

∣∣∣ ≤ cx3h
−3/2| log h| see the proof of Proposition 4.5.

We have∫
W
K23ϕ = −c

∫
W

12x2
3 − 3(y1 − h)2 − 3y2

2

((y1 − h)2 + y2
2 + x2

3)7/2
y2ϕ(y1, y2) dy1 dy2

= −c
∫
W+

12x2
3 − 3(y1 − h)2 − 3y2

2

((y1 − h)2 + y2
2 + x2

3)7/2
y2(ϕ(y1, y2)− ϕ(y1,−y2)) dy1 dy2.(38)
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For y ∈ W+ we have ϕ(y1, y2) − ϕ(y1,−y2) = 2y2ϕ2(y1, ξ2) where ξ2 ∈ (−y2, y2) and
ϕ2(y1, ξ2) = ϕ2(h, 0)+(y1−h, ξ2)◦∇ϕ2(ξ′), where ξ′ is a point between (h, 0) and (y1, ξ2).
It follows that (38) equals

− cϕ2(h, 0)

∫
W+

12x2
3 − 3(y1 − h)2 − 3y2

2

((y1 − h)2 + y2
2 + x2

3)7/2
2y2

2 dy1 dy2

− c

∫
W+

12x2
3 − 3(y1 − h)2 − 3y2

2

((y1 − h)2 + y2
2 + x2

3)7/2
2y2

2(y1 − h, ξ2) ◦ ∇ϕ2(ξ′) dy1 dy2 = I + II.

Put V = B(0, h/2), V+ = {z ∈ V : z2 > 0}. By substitution z1 = y1 − h, z2 = y2 we
obtain

I = −cϕ2(h, 0)

∫
V+

12x2
3 − 3z2

1 − 3z2
2

(z2
1 + z2

2 + x2
3)7/2

2z2
2 dy1 dy2

= −cϕ2(h, 0)

∫
V

12x2
3 − 3z2

1 − 3z2
2

(z2
1 + z2

2 + x2
3)7/2

z2
2 dy1 dy2.

By symmetry of z1, z2 the above integral equals

1

2

∫
V

12x2
3 − 3z2

1 − 3z2
2

(z2
1 + z2

2 + x2
3)7/2

(z2
1 + z2

2) dy1 dy2.

Let us introduce polar coordinates z1 = ρ cos θ, z2 = ρ sin θ. Then the above expression

equals π
∫ h/2

0
12x23−3ρ2

(ρ2+x23)7/2
ρ3 dρ. By elementary calculation this is equal to (3π/16)h4(x2

3 +

h2/4)−5/2. By Lemma 3.11 ϕ2(h, 0) ≤ ch1/2| log h|. Hence |I| ≤ ch−1/2| log h|.
Now we estimate II. For y ∈W+ and ξ2, ξ′ as above we have

(y1 − h, ξ2) ◦ ∇ϕ2(ξ′) = (y1 − h)ϕ12(ξ′) + ξ2ϕ22(ξ′). (39)

For any w ∈W by Lemma 3.11 we get |ϕ12(w)| ≤ ch−1/2| log h|, |ϕ22(w)| ≤ ch−1/2 so (39)

is bounded from above by c|y1 − h|h−1/2| log h| + c|y2|h−1/2. Put B+((h, 0), x3) = {y ∈
B((h, 0), x3) : y2 > 0}. It follows that

|II| ≤ c

x5
3

∫
B+((h,0),x3)

|y − (h, 0)|3h−1/2| log h| dy

+ c

∫
W+\B+((h,0),x3)

|y − (h, 0)|−2h−1/2| log h| dy ≤ ch−1/2| log h|| log x3|.

Hence for x ∈ S4(h) we have

|u23(x)| ≤
∣∣∣∣∣
∫
D\W

K23ϕ

∣∣∣∣∣+ |I|+ |II| ≤ ch−1/2| log h|| log x3|. (40)

For any β > 0 and x ∈ S4(h) we get by (37) |u23(x)|β ≤ cβ1xβ3h−3β. Using this and (40)

we get |u23(x)|1+β ≤ ccβ1x
β
3 | log x3|h−3β−1/2| log h|. Putting β = 1/9 we obtain |u23(x)| ≤

ch−3/4| log h|9/10 ≤ ch−3/4| log h|. �

Lemma 4.7. For any (x1, x2) ∈ D we have u13(x1, x2, 0) = u23(x1, x2, 0) = 0 and
u33(x1, x2, 0) > 0.

Proof. The equalities u13(x1, x2, 0) = u23(x1, x2, 0) = 0 for (x1, x2) ∈ D follows easily from
(8). For (x1, x2) ∈ int(Dc) we have

u3(x1, x2, 0) = −(−∆)1/2ϕ(x) =
1

2π

∫
D

ϕ(y)

|y − x|3 dy > 0.

By Corollary 3.13 we have f(x1, x2) = u3(x1, x2, 0) ∈ L1(R2). By the normal derivative
lemma ([15, Lemma 2.33]) we get u33(x1, x2, 0) > 0 for (x1, x2) ∈ D. �
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5. Harmonic extension for a ball

The aim of this section is to show the following result.

Proposition 5.1. Let ϕ be the solution of (1-2) for the ball B(0, 1) ⊂ R2 and u be the
harmonic extension of ϕ given by (6-10). We have

H(u)(x) > 0, x ∈ R3 \ {Bc(0, 1)× {0}}. (41)

Let us recall that H(u)(x) is the determinant of the Hessian matrix of u in x. Recall
also that the solution of (1-2) for the ball B(0, 1) is given by an explicit formula ϕ(x) =

CB(1−|x|)1/2, CB = 2/π. Hence for x = (x1, x2, x3), where x3 > 0 the function u is given
by an explicit formula u(x) =

∫
B(0,1)K(x1−y1, x2−y2, x3)ϕ(y1, y2) dy1 dy2. Applying this

it is easy to check numerically that (41) holds (e.g. using Mathematica). Unfortunately,
it seems very hard to prove formally (41) using directly the explicit formula for u.

Instead, to show (41) we use a ”trick”: we add an auxiliary function w to the function
u and we use Lewy’s Theorem 1.6. First, we briefly present the idea of the proof. We
define

Ψ(b)(x) = (1− b)u(x) + bw(x), b ∈ [0, 1],

where w is an appropriately chosen auxiliary function given by

w(x) = K(x1, x2, x3 +
√

3/2). (42)

Note that for any q ≥ 0 the set {(x1, x2, x3) : K33(x1, x2, x3 + q) = 0, x3 > −q} =
{(x1, x2, x3) : x2

1 + x2
2 = (2/3)(x3 + q)2, x3 > −q}. The function w is chosen so that

w33(x) = 0 for x ∈ ∂B(0, 1)×{0} i.e. for x = (x1, x2, 0) where x2
1 + x2

2 = 1. Such a choice

helps to control H(Ψ(b))(x) near ∂B(0, 1) × {0}. One can directly check that Ψ(1) = w

satisfies H(Ψ(1))(x) > 0 for x ∈ R3
+ ∪B(0, 1)× {0} (recall that R3

+ = {(x1, x2, x3) : x3 >

0}). If Ψ(0) = u does not satisfy H(Ψ(0))(x) > 0 for x ∈ R3
+ ∪ B(0, 1) × {0} one can

show that there exists b ∈ [0, 1) for which H(Ψ(b))(x) ≥ 0 for x ∈ R3
+ ∪B(0, 1)× {0} and

such that there exists x0 ∈ R3
+ for which H(Ψ(b))(x0) = 0. This gives contradiction with

Theorem 1.6. If Ψ(0) = u does not satisfy H(Ψ(0))(x) > 0 for x ∈ R3
− one can use Lemma

2.7 and again obtain contradiction. This finishes the presentation of the idea of the proof.

Lemma 5.2. Let w be given by (42) and v = u + aw, a ≥ 0. There exists M1 ≥ 10 and
h1 ∈ (0, 1/2] such that for any a ≥ 0 we have

H(v)(x) > 0, x ∈ A1 ∪A2 ∪A3 ∪A4,

where

A1 = {(x1, x2, x3) : x2
1 + x2

2 ∈ [(1− h1)2, (1 + h1)2], x3 ∈ (0, h1]},
A2 = {(x1, x2, x3) : x2

1 + x2
2 ∈ [(1 + h1)2,M2

1 ], x3 ∈ (0, h1]},
A3 = {(x1, x2, 0) : x2

1 + x2
2 < 1},

A4 = {(x1, x2, x3) ∈ R3
+ : x2

1 + x2
2 ≥M2

1 or x3 ≥M1}.
Proof. First note that for any fixed x3 > 0 the function (x1, x2)→ v(x1, x2, x3) is radial so
it is enough to show the assertion for x ∈ (A1∪A2∪A3∪A4)∩L, where L = {(x1, x2, x3) :
x2 = 0, x1 ≤ 0}. Put A′i = Ai ∩ L, i = 1, 2, 3, 4. For x ∈ A′1 ∪ A′2 ∪ A′3 ∪ A′4 we have
v12(x) = v23(x) = 0 and v22(x) < 0. Hence H(v)(x) = v22(x)f(a, x), where

f(a, x) =

∣∣∣∣ v11 v13

v13 v33

∣∣∣∣ =

∣∣∣∣ u11 + aw11 u13 + aw13

u13 + aw13 u33 + aw33

∣∣∣∣ (43)

and it is enough to show f(a, x) < 0 for x ∈ A′1 ∪A′2 ∪A′3 ∪A′4.
We will consider 4 cases: x ∈ A′1, x ∈ A′2, x ∈ A′3, x ∈ A′4.

Case 1. x ∈ A′1.
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Put q0 =
√

3/2 and z0 = (−1, 0, 0). Note that w33(z0) = 0, w11(z0) = CKq0(12 −
3q2

0)(1+q2
0)−7/2 ≈ 9.185CK(1+q2

0)−7/2, w13(z0) = −CK(12q2
0−3)(1+q2

0)−7/2 = −15CK(1+

q2
0)−7/2. Let us denote w11(x) = p1(x), w13(x) = p2(x). It is clear that for sufficiently

small h1 and x ∈ A′1 we have √
9

10
|p2(x)| > |p1(x)|. (44)

Let h0 denote the minimum of constants h0 from Propositions 4.1-4.6. For any h ∈ (0, h0]
put

T1(h) = {(−1 + h, 0, x3) : x3 ∈ (0, h/4]},
T2(h) = {(−1 + h, 0, x3) : x3 ∈ (h/4, h]} ∪ {(x1, 0, h) : x1 ∈ [−1,−1 + h)},
T3(h) = {(x1, 0, h) : x1 ∈ [−

√
2/3h− 1,−1]},

T4(h) = {(x1, 0, h) : x1 ∈ [−1− h,−
√

2/3h− 1)} ∪ {(−1− h, 0, x3) : x3 ∈ (0, h)}.
Note that the value −

√
2/3h − 1 in the definition of T3(h), T4(h) is chosen so that

w33(−
√

2/3h − 1, 0, h) = 0. Note also that w33(x) ≥ 0 for x ∈ T1(h) ∪ T2(h) ∪ T3(h)
and w33(x) < 0 for x ∈ T4(h).

We will consider 4 subcases: x ∈ T1(h), x ∈ T2(h), x ∈ T3(h), x ∈ T4(h).

Subcase 1a. x ∈ T1(h).
By (43), Propositions 4.1, 4.4 and definition of w we have

f(a, x) =

∣∣∣∣ −b1(x)h−3/2 + p1(x)a −b2(x)h−3/2 − p2(x)a

−b2(x)h−3/2 − p2(x)a ε(x)a+ b1(x)h−3/2 + b3(x)h−1/2

∣∣∣∣ ,
where 0 < B′1 ≤ b1(x) ≤ B1, 0 ≤ b2(x) ≤ B2, 0 < B′3 ≤ b3(x) ≤ B3, 0 < P ′1 ≤ p1(x) ≤ P1,
0 < P ′2 ≤ p2(x) ≤ P2, 0 ≤ ε(x) ≤ E(h) ≤ E(h0), limh→0+ E(h) = 0. More precisely,
estimates of b1(x), b2(x) follow from estimates of u11(x), u13(x) for S4(h) in Proposition
4.4, estimates of b3(x) follow from u33(x) = −u11(x) − u22(x) and estimates of u11(x),
u22(x) for S4(h) in Propositions 4.1, 4.4. Estimates of p1(x), p2(x) follow from formulas
of w11(z0), w13(z0) and continuity of w11(x), w13(x) near z0. Estimates of ε(x) and
limh→0+ E(h) = 0 follow from equality w33(z0) = 0 and continuity of w33(x) near z0.

Hence

f(a, x) = −ε(x)b1(x)ah−3/2 − b21(x)h−3 − b1(x)b3(x)h−2 + ε(x)p1(x)a2

+b1(x)p1(x)ah−3/2 + p1(x)b3(x)ah−1/2 − b22(x)h−3 − p2
2(x)a2 − 2b2(x)p2(x)ah−3/2.

Note that for sufficiently small h we have

p1(x)b3(x)ah−1/2 < p1(x)b1(x)ah−3/2.

For sufficiently small h, using this and (44) we get

(9/10)p2
2(x)a2 + b21(x)h−3 > p2

1(x)a2 + b21(x)h−3

≥ 2b1(x)p1(x)ah−3/2

> b1(x)p1(x)ah−3/2 + b3(x)p1(x)ah−1/2.

For sufficiently small h we also have p1(x)ε(x)a2 < (1/10)p2
2(x)a2. It follows that for

sufficiently small h1 > 0 and for all 0 < h ≤ h1, a ≥ 0, x ∈ T1(h) we have f(a, x) < 0.

Subcase 1b. x ∈ T2(h).
By (43), Propositions 4.1, 4.2, 4.4 and definition of w we have

f(a, x) =

∣∣∣∣ b1(x)h−3/2 + p1(x)a −b2(x)h−3/2 − p2(x)a

−b2(x)h−3/2 − p2(x)a ε(x)a− b1(x)h−3/2 + b3(x)h−1/2

∣∣∣∣ ,
where −B1 ≤ b1(x) ≤ B1, 0 < B′2 ≤ b2(x) ≤ B2, 0 < B′3 ≤ b3(x) ≤ B3, 0 < P ′1 ≤
p1(x) ≤ P1, 0 < P ′2 ≤ p2(x) ≤ P2, 0 ≤ ε(x) ≤ E(h) ≤ E(h0), limh→0+ E(h) = 0.
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More precisely, estimates of b1(x), b2(x) follow from estimates of u11(x), u13(x) for S3(h)
in Propositions 4.2, 4.4 estimates of b3(x) follow from u33(x) = −u11(x) − u22(x) and
estimates of u11(x), u22(x) for S3(h) in Propositions 4.1, 4.2. Estimates of p1(x), p2(x),
ε(x) and limh→0+ E(h) = 0 follow by the same arguments as in Subcase 1a. Hence

f(a, x) = ε(x)b1(x)ah−3/2 − b21(x)h−3 + b1(x)b3(x)h−2 + ε(x)p1(x)a2

−b1(x)p1(x)ah−3/2 + p1(x)b3(x)ah−1/2 − b22(x)h−3 − p2
2(x)a2 − 2b2(x)p2(x)ah−3/2.

Let us first assume that b1(x) ≥ 0. Then for sufficiently small h we have

ε(x)b1(x)ah−3/2 < b2(x)p2(x)ah−3/2,

p1(x)b3(x)ah−1/2 < b2(x)p2(x)ah−3/2,

b1(x)b3(x)h−2 < b22(x)h−3,

ε(x)p1(x)a2 < p2
2(x)a2,

which implies f(a, x) < 0.
Now let us assume that b1(x) < 0. By (44) for sufficiently small h we get

(9/10)p2
2(x)a2 + b21(x)h−3 > p2

1(x)a2 + b21(x)h−3 ≥ |2b1(x)p1(x)ah−3/2|,
p1(x)ε(x)a2 < (1/10)p2

2(x)a2,

p1(x)b3(x)ah−1/2 < 2b2(x)p2(x)ah−3/2,

which implies f(a, x) < 0.
It follows that for sufficiently small h1 > 0 and for all 0 < h ≤ h1, a ≥ 0, x ∈ T2(h) we

have f(a, x) < 0.

Subcase 1c. x ∈ T3(h).
By (43), Propositions 4.1, 4.2, 4.3 and definition of w we have

f(a, x) =

∣∣∣∣ b1(x)h−3/2 + p1(x)a −b2(x)h−3/2 − p2(x)a

−b2(x)h−3/2 − p2(x)a ε(x)a− b1(x)h−3/2 + b3(x)h−1/2

∣∣∣∣ ,
where 0 < B′1 ≤ b1(x) ≤ B1, −B2 ≤ b2(x) ≤ B2, 0 < B′3 ≤ b3(x) ≤ B3, 0 < P ′1 ≤
p1(x) ≤ P1, 0 < P ′2 ≤ p2(x) ≤ P2, 0 ≤ ε(x) ≤ E(h) ≤ E(h0), limh→0+ E(h) = 0.
More precisely, estimates of b1(x), b2(x) follow from estimates of u11(x), u13(x) for S2(h)
in Propositions 4.2, 4.3 estimates of b3(x) follow from u33(x) = −u11(x) − u22(x) and
estimates of u11(x), u22(x) for S2(h) in Propositions 4.1, 4.2, 4.3. Estimates of p1(x),
p2(x), ε(x) and limh→0+ E(h) = 0 follow by the same arguments as in Subcase 1a.

For sufficiently small h we have

b3(x)h−1/2 < b1(x)h−3/2/2, (45)

2B2

B′1
ε(x) <

P ′2
2

(46)

ε(x)(p1(x) + 2ε(x)) <
p2

2(x)

4
. (47)

If ε(x)a − b1(x)h−3/2 + b3(x)h−1/2 < 0 then clearly f(a, x) < 0. So we may assume

ε(x)a− b1(x)h−3/2 + b3(x)h−1/2 ≥ 0 which implies (see (45))

ε(x)a ≥ b1(x)h−3/2 − b3(x)h−1/2 > (b1(x)h−3/2)/2, (48)

ε(x)a > ε(x)a− b1(x)h−3/2 + b3(x)h−1/2 ≥ 0. (49)

By (46) and (48) we get

|b2(x)|h−3/2 =
2|b2(x)|
b1(x)

b1(x)h−3/2

2
<

2B2

B′1
ε(x)a <

P ′2a

2
<
p2(x)a

2
. (50)
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By (48), (49), (50), (47) we get

f(a, x) ≤ (p1(x)a+ b1(x)h−3/2)ε(x)a−
(
p2(x)a

2

)2

≤ (p1(x)a+ 2ε(x)a)ε(x)a− p2
2(x)a2

4
< 0.

It follows that for sufficiently small h1 > 0 and for all 0 < h ≤ h1, a ≥ 0, x ∈ T3(h) we
have f(a, x) < 0.

Subcase 1d. x ∈ T4(h).
Note that for x = (x1, 0, x3) ∈ T4(h) we have w33(x) < 0. We also have

u33(x) =

∫
B(0,1)

K33(x1 − y1, x2 − y2, x3)ϕ(y1, y2) dy1 dy2.

Recall that K33(x1−y1, x2−y2, x3) = CKx3((x1−y1)2 +(x2−y2)2 +x2
3)−7/2(6x2

3−9(x1−
y1)2 − 9(x2 − y2)2). Hence to have K33(x1 − y1,−y2, x3) < 0 for all (y1, y2) ∈ B(0, 1) and
x1 ≤ −1 it is sufficient to have 6x2

3 − 9(x1 + 1)2 < 0. Note that for x = (x1, 0, x3) ∈ T4(h)

we have 0 < x3 < −
√

3/2(x1 + 1), x1 < −1. It follows that 6x2
3 − 9(x1 + 1)2 < 0

and u33(x) < 0. Hence u33(x) + aw33(x) < 0. Note that u22(x) + aw22(x) < 0 so
u11(x) + aw11(x) = −u22(x)− aw22(x)−u33(x)− aw33(x) > 0. This and (43) implies that
f(a, x) < 0 for any a ≥ 0 and x ∈ T4(h).

Case 2. x ∈ A′2.
This case follows from the same arguments as in subcase 1d.

Case 3. x ∈ A′3.

Note that w33(x) > 0 for x ∈ A′3. Put x3 = x3 +
√

3/2. We have

w11(x) = CKx3(x2
1 + x2

3)−7/2(12x2
1 − 3x2

3).

Note that

{(x1, 0, x3) : w11(x1, 0, x3) = 0, x1 ≤ 0, x3 > −
√

3/2} = {(x1, 0, x3) : x3 +
√

3/2 = −2x1}.

Put T1 =
{

(x1, 0, 0) : x1 ∈
[
−
√

3
2
√

2
, 0
]}

, T2 =
{

(x1, 0, 0) : x1 ∈
(
−1, −

√
3

2
√

2

)}
. We have A′2 =

T1 ∪ T2. Note that w11(−
√

3/(2
√

2), 0, 0)) = 0, w11(x) ≤ 0 for x ∈ T1 and w11(x) > 0 for

x ∈ T2. Note also that for x = (x1, 0, 0) ∈ A′3 we have u(x) = ϕ(x1, 0) = CB(1− x2
1)1/2 so

u11(x) < 0.
We will consider 2 subcases: x ∈ T1, x ∈ T2.

Subcase 3a. x ∈ T1.
Note that w11(x) ≤ 0, u11(x) < 0 so u11(x) + aw11(x) < 0 for a ≥ 0. It follows that

u33(x)+aw33(x) > 0 (because u33+aw33 = −(u11+aw11+u22+aw22)). Hence f(a, x) < 0.

Subcase 3b. x ∈ T2.
For (y1, y2) ∈ B(0, 1) and y = (y1, y2, 0) we have u(y) = ϕ(y1, y2) = CB(1 − y2

1 −
y2

2)1/2. Therefore for x ∈ T2 we obtain u11(x) = ϕ11(x1, 0) = −CB(1 − x2
1)−3/2, u33(x) =

−ϕ11(x1, 0)− ϕ22(x1, 0) = CB(1− x2
1)−3/2(2− x2

1). Hence

u33(x) < 2|u11(x)|. (51)

For x ∈ T2 we also have −w22(x)− w11(x) = w33(x) > 0 so

|w22(x)| > |w11(x)|. (52)

Note that for x = (x1, x2, x3) = (x1, 0, 0) ∈ T2 we have x3
|x1| =

√
3/2

|x1| and x3
|x1| ∈

(√
3
2 , 2
)

.
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For x ∈ T2 we have

|w13(x)|
|w22(x)| =

|x1|
x3

(12x2
3 − 3x2

1)

(3x2
1 + 3x2

3)
=
|x1|
x3

4− 5(
x3
|x1|

)2
+ 1

 >
2|x1|
x3

> 1,

so
|w13(x)| > |w22(x)|. (53)

If a = 0 then by explicit formulas f(a, x) < 0. If a > 0 and u11(x) + aw11(x) ≤ 0 then
u33(x) + aw33(x) = −(u11(x) + aw11(x) + u22(x) + aw22(x)) > 0 and u13(x) + aw13(x) =
aw13(x) 6= 0 (see (53)) so f(a, x) < 0. So we may assume a > 0 and u11(x) + aw11(x) > 0.

Again by (43) and (51), (53) we get

f(a, x) <

∣∣∣∣ u11(x) + aw11(x) a|w22(x)|
a|w22(x)| 2|u11(x)| − aw11(x)− aw22(x)

∣∣∣∣ .
Hence

f(a, x) < −2|u11(x)|2 + 3|u11(x)|w11(x)a− |u11(x)||w22(x)|a
−w2

11(x)a2 + w11(x)|w22(x)|a2 − |w22(x)|2a2.

By (52) this is bounded from above by

−2|u11(x)|2 + 2|u11(x)||w11(x)|a− w2
11(x)a2 + w11(x)|w22(x)|a2 − |w22(x)|2a2

= −
(√

2|u11(x)| − w11(x)a√
2

)2

−
(
w11(x)a√

2
− |w22(x)|a√

2

)2

−
( |w22(x)|a√

2

)2

< 0.

Case 4. x ∈ A′4.

Recall that x3 = x3 +
√

3/2 and put x = (x1, x2, x3). Recall also that w(x) = K(x).
We have

K11(x) = CKx3(x2
1 + x2

2 + x2
3)−7/2(12x2

1 − 3x2
2 − 3x2

3),

K13(x) = CKx1(x2
1 + x2

2 + x2
3)−7/2(12x2

3 − 3x2
1 − 3x2

2),

K33(x) = CKx3(x2
1 + x2

2 + x2
3)−7/2(6x2

3 − 9x2
1 − 9x2

2).

For any M ≥ 10 put

T1(M) = {(x1, 0, x3) : x3 = M,x1 ≤ 0, x3 ≥ 3|x1|},
T2(M) = {(x1, 0, x3) : x3 = M,x1 ≤ 0,

√
3/2|x1| ≤ x3 < 3|x1|},

T3(M) = {(x1, 0, x3) : x3 = M,x1 ≤ 0, |x1| ≤ x3 <
√

3/2|x1|}
∪{(x1, 0, x3) : x1 = −M, 0 < x3 < M}.

We will consider 3 subcases: x ∈ T1(M), x ∈ T2(M), x ∈ T3(M).

Subcase 4a. x ∈ T1(M).
Put B = B(0, 1) ⊂ R2. We have

u11(x) =

∫
B

(K11(x1 − y1,−y2, x3)−K11(x))ϕ(y1, y2) dy1 dy2

+K11(x)

∫
B
ϕ(y1, y2) dy1 dy2,

K11(x) =
CKx3(12x2

1 − 3x2
3)

(x2
1 + x2

3)7/2
<
CKx

3
3

(
12
9 − 3

)
(x2

1 + x2
3)7/2

<
−c
x4

3

. (54)

For (y1, y2) ∈ B we also have

|K11(x1 − y1,−y2, x3)−K11(x)| ≤ (|y1|+ |y2|+ |x3 − x3|)|∇K11(ξ)| ≤ 4|∇K11(ξ)|,
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where ξ is a point between (x1 − y1,−y2, x3) and x = (x1, 0, x3). For such ξ we have

|∇K11(ξ)| ≤ c

x5
3

. (55)

By (54), (55) for sufficiently large M and all x ∈ T1(M) we have u11(x) < 0. We also have
aw11(x) = aK11(x) < 0 for a ≥ 0, x ∈ T1(M). Hence u11(x) + aw11(x) < 0 which implies
f(a, x) < 0. It follows that for sufficiently large M1 ≥ 10 and for all M ≥ M1, a ≥ 0,
x ∈ T1(M) we have f(a, x) < 0.

Subcase 4b. x ∈ T2(M).
First we need the following auxiliary lemma.

Lemma 5.3. Let f(y1, y3) = −6y3
1 − 3y2

1y3 + 24y1y
2
3 − 3y3

3. For any y3 > 0 and y1 ∈
[y3/3, y3] we have f(y1, y3) > 4y3

3.

Proof. The proof is elementary. Fix y3 > 0 and put g(y1) = f(y1, y3). We have g′(y1) =
−18y2

1 − 6y1y3 + 24y2
3, g′(y1) = 0 for y1 = (−8/6)y3 and y1 = y3 so g is increasing for

y1 ∈ [(−8/6)y3, y3]. We also have g(y3/3) = (40/9)y3
3 so for any y1 ∈ [y3/3, y3] we have

g(y1) > 4y3
3. �

Put b =
∫
B ϕ(y1, y2) dy1 dy2. For x ∈ T2(M) we have

f(a, x) =

∣∣∣∣ K11(x)(a+ b) + ε11(x) K13(x)(a+ b) + ε13(x)
K13(x)(a+ b) + ε13(x) K33(x)(a+ b) + ε33(x)

∣∣∣∣ ,
where

εij(x) =

∫
B

(Kij(x1 − y1,−y2, x3)−Kij(x))ϕ(y1, y2) dy1 dy2

for (i, j) = (1, 1) or (1, 3) or (3, 3). For (y1, y2) ∈ B we have

|Kij(x1 − y1,−y2, x3)−Kij(x)| ≤ (|y1|+ |y2|+ |x3 − x3|)|∇Kij(ξ)| ≤ 4|∇Kij(ξ)|,
where ξ is a point between (x1−y1,−y2, x3) and x = (x1, 0, x3). We have |∇Kij(ξ)| ≤ cx−5

3 ,
so

|εij(x)| ≤ cb

x5
3

. (56)

Put

f1(a, x) =

∣∣∣∣ K11(x)(a+ b) K13(x)(a+ b)
K13(x)(a+ b) K33(x)(a+ b)

∣∣∣∣ .
We have |Kij(x)| ≤ cx−4

3 so by (56) we obtain

|f(a, x)− f1(a, x)| ≤ c(a+ b)bx−9
3 . (57)

On the other hand we have

|f1(a, x)| ≥ (a+ b)2
(
K2

13(x)−K11(x)K33(x)
)

≥ (a+ b)2

(
K2

13(x)−
(
K11(x) +K33(x)

2

)2
)

= (a+ b)2

(
|K13(x)|2 −

( |K22(x)|
2

)2
)
. (58)

We have

|K13(x)| − |K22(x)|
2

=
1

2
CK(|x1|2 + x2

3)−7/2(−6|x1|3 − 3|x1|2x3 + 24|x1|x2
3 − 3x3

3).

By Lemma 5.3 we obtain

|K13(x)| − |K22(x)|
2

≥ 1

2
CK(|x1|2 + x2

3)−7/24x3
3 ≥ cx−4

3 .
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Using this and (58) we obtain

|f1(a, x)| ≥ (a+ b)2

(
|K13(x)| − |K22(x)|

2

)2

≥ c(a+ b)2x−8
3 .

It follows that f1(a, x) < −c(a+b)2x−8
3 . Using this and (57) we obtain that for sufficiently

large M1 ≥ 10 and for all M ≥M1, a ≥ 0, x ∈ T2(M) we have f(a, x) < 0.

Subcase 4c. x ∈ T3(M).
This subcase follows from the same arguments as in subcase 1d. �

proof of Proposition 5.1. On the contrary assume that there exists z = (z1, z2, z3) ∈ R3 \
(Bc(0, 1) × {0}) such that H(u)(z) ≤ 0. By Lemma 2.7 we may assume that z1 ≥ 0. By
an explicit formula for ϕ and Lemma 4.7 we may assume that z1 > 0. Define

Ψ(b)(x) = (1− b)u(x) + bw(x), b ∈ [0, 1],

where w is given by (42). By direct computation for any x = (x1, x2, x3) ∈ R3 with

x3 > −
√

3/2 we have

H(w)(x) = C3
K

27(x3 +
√

3/2)(x2
1 + x2

2 + 2(x3 +
√

3/2)2)

(x2
1 + x2

2 + (x3 +
√

3/2)2)15/2
> 0.

Recall that R3
+ = {(x1, x2, x3) ∈ R3 : x3 > 0} and put Ω = R3

+ \(A1∪A2∪A4), where A1,

A2, A4 are sets from Lemma 5.2. By this lemma we obtain that z ∈ Ω and H(Ψ(b))(x) > 0

for all b ∈ [0, 1] and x ∈ ∂Ω. Note that Ψ(0) = u and Ψ(1) = w, H(Ψ(0))(z) < 0,

H(Ψ(1))(x) > 0 for all x ∈ Ω. Clearly, all second partial derivatives of Ψ(b) are uniformly
Lipschitz continuos on Ω that is

∃c ∀b ∈ [0, 1] ∀x, y ∈ Ω ∀i, j ∈ {1, 2, 3}
∣∣∣Ψ(b)

ij (x)−Ψ
(b)
ij (x)

∣∣∣ ≤ c|x− y|.
It follows that there exists b0 ∈ [0, 1) such that H(Ψ(b0))(z0) = 0 for some z0 ∈ Ω and

H(Ψ(b0))(x) ≥ 0 for all x ∈ Ω. This gives contradiction with Theorem 1.6. �

6. Concavity of ϕ

In this section we prove the main result of this paper Theorem 1.1. This is done by
using the method of continuity, Lewy’s Theorem 1.6 and results from Sections 3, 4, 5.

For any ε ≥ 0 we define

v(ε)(x) = u(x) + ε

(
−x

2
1

2
− x2

2

2
+ x2

3

)
, x ∈ R3 \ (Dc × {0}), (59)

where u is the harmonic extension of ϕ given by (6-10) and ϕ is the solution of (1-2) for

an open bounded set D ⊂ R2. When D is not fixed we will sometimes write v(ε,D) instead
of v(ε).

Lemma 6.1. Let C1 > 0, R1 > 0, κ2 ≥ κ1 > 0, D ∈ F (C1, R1, κ1, κ2), ϕ be the
solution of (1-2) for D and u the harmonic extension of ϕ given by (6-10). For any

ε ≥ 0 let v(ε) be given by (59). For any (x1, x2, x3) ∈ R3
+ we have H(v(ε))(x1, x2,−x3) =

H(v(ε))(x1, x2, x3).

The proof of this lemma is similar to the proof of Lemma 2.7 and it is omitted.

Proposition 6.2. Fix C1 > 0, R1 > 0, κ2 ≥ κ1 > 0 and D ∈ F (C1, R1, κ1, κ2). Denote
Λ = {C1, R1, κ1, κ1}. Let ϕ be the solution of (1-2) for D, u the harmonic extension of ϕ
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D
M
x1

Mx3

−M

−M
U3(M,h, η) U3(M,h, η)

U2(h) U2(h)

U1(M)

U1(M)

U1(M)

U1(M)

A cross section parallel to the x1x3 plane

Figure 7

and v(ε) given by (59). For M ≥ 10, h ∈ (0, 1/2], η ∈ (0, 1/2] we define (see Figure 7)

U1(M) = {x ∈ R3 : x2
1 + x2

2 ≤M2, x3 = M or x3 = −M}
∪{x ∈ R3 : x2

1 + x2
2 = M2, x3 ∈ [−M,M ] \ {0}},

U2(h) = {x ∈ R3 : (x1, x2) ∈ D, δD((x1, x2)) ≤ h, x3 ∈ [−h, h]}
∪{x ∈ R3 : (x1, x2) /∈ D, δD((x1, x2)) ≤ h, x3 ∈ [−h, h] \ {0}},

U3(M,h, η) = {x ∈ R3 : (x1, x2) /∈ D, δD((x1, x2)) ≥ h, x2
1 + x2

2 ≤M2,

x3 ∈ [−η, η] \ {0}},
U4(h) = {x ∈ R3 : (x1, x2) ∈ D, δD((x1, x2)) ≤ h, x3 = 0}.

Then we have

∃c1 = c1(Λ) ∈ (0, 1] ∃M0 ≥ 10 ∃h1 = h1(Λ) ∈ (0, 1/2] ∀M ≥M0 ∀ε ∈ (0, c1M
−7]

∃η = η(Λ,M, ε) ∈ (0, 1/2] ∃C = C(Λ,M, ε) > 0 ∀x ∈ U1(M) ∪ U2(h1) ∪ U3(M,h1, η)

H(v(ε))(x) ≥ C.
We also have

∃h̃ = h̃(Λ) ∈ (0, 1/2] ∃C̃ = C̃(Λ) > 0 ∀x ∈ U4(h̃) H(u)(x) ≥ C̃. (60)

Proof. In the whole proof we use convention stated in Remark 2.9. We have H(v(ε))(x) =
W1(x) +W2(x) +W3(x), where

W1(x) = v
(ε)
12 (x)

(
v

(ε)
13 (x)v

(ε)
23 (x)− v(ε)

12 (x)v
(ε)
33 (x)

)
,

W2(x) = −v(ε)
23 (x)

(
v

(ε)
11 (x)v

(ε)
23 (x)− v(ε)

13 (x)v
(ε)
12 (x)

)
,

W3(x) = v
(ε)
22 (x)f(ε, x),

f(ε, x) = v
(ε)
11 (x)v

(ε)
33 (x)− (v

(ε)
13 (x))2.

The proof consists of 3 parts.

Part 1. Estimates on U1(M).
We may assume in this part that x2 = 0, x3 > 0, x1 ≤ 0.
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By formulas uij(x) =
∫
DKij(x1−y1, x2−y2, x3)ϕ(y1, y2) dy1 dy2 and explicit formulas for

Kij (see Section 2), there exist M1 ≥ 10 and c such that for any M ≥M1 and x ∈ U1(M)
we have |u11(x)| ≤ cx3M

−5, u22(x) ≈ −x3M
−5, |u33(x)| ≤ cx3M

−5, |u13(x)| ≤ cM−4,
|u23(x)| ≤ cM−5, |u12(x)| ≤ cx3M

−6.
Let us fix arbitrary M ≥M1.
Let x ∈ U1(M) (recall that we assume that x2 = 0, x3 > 0, x1 ≤ 0). We have

|W1(x)| ≤ cx3M
−6(M−4M−5 + x3M

−6(x3M
−5 + 2ε)) ≤ cx3M

−15 + cεM−10, (61)

|W2(x)| ≤ cM−5((x3M
−5 + ε)M−5 +M−4x3M

−6) ≤ cx3M
−15 + cεM−10. (62)

Now we estimate W3(x). We have

v
(ε)
22 (x) = u22(x)− ε ≈ −cx3M

−5 − ε. (63)

The most important is the estimate of f(ε, x). To obtain this estimate we will consider 6
cases.

Case 1.1. x3 = M , |x1| < x3/3.

Put m(x) = CK(x2
1 + x2

3)−7/2. We have

u11(x) ≈ K11(x) = m(x)x3(12x2
1 − 3x2

3) < cM−7x3

(
12
(x3

3

)2
− 3x2

3

)
,

so u11(x) ≤ −cM−4. We also have

u33(x) ≈ K33(x) = m(x)x3(6x2
3 − 9x2

1) ≥ cM−7x3

(
6x2

3 − 9
(x3

3

)2
)
,

so u33(x) ≥ cM−4. Therefore for any ε ≥ 0 we have v
(ε)
11 (x) ≤ −cM−4, v

(ε)
33 (x) ≥ cM−4.

Hence f(ε, x) ≤ −cM−8.

Case 1.2. x3 = M , |x1| ∈ [x3/3, x3/
√

3/2].
By the arguments from Subcase 4b in the proof of Lemma 5.2 we have u11(x)u33(x)−

(u13(x))2 < −cM−8 for sufficiently large M . For any ε ≥ 0 we have∣∣f(ε, x)−
(
u11(x)u33(x)− (u13(x))2

)∣∣ ≤ 2ε2 + 2ε|u11(x)|+ ε|u33(x)|.
For any c1 ∈ (0, 1] and all ε ∈ (0, c1M

−7] this is bounded from above by cc1M
−11. It

follows that for sufficiently small c1 ∈ (0, 1], for sufficiently large M and all ε ∈ (0, c1M
−7]

we have f(ε, x) < −cM−8.

Case 1.3. x3 = M , |x1| ∈ [x3/
√

3/2, x3].
We have

u11(x) ≈ K11(x) = m(x)x3(12x2
1 − 3x2

3) ≈M−7x3

(
12

x2
3

3/2
− 3x2

3

)
≈M−4.

For y ∈ D ⊂ B(0, 1) we also have

K33(x1 − y1,−y2, x3) ≤ CKx3((x1 − y1)2 + y2
2 + x2

3)−7/2(6x2
3 − 9(x1 − y1)2)

= CKx3((x1 − y1)2 + y2
2 + x2

3)−7/2(6x2
3 − 9x2

1 + 18x1y1 − 9y2
1) ≤ cM−5,

so u33(x) ≤ cM−5. For sufficiently small c1 ∈ (0, 1] and all ε ∈ (0, c1M
−7] we obtain

v
(ε)
11 (x) ≈ M−4, v

(ε)
33 (x) ≤ cM−5. We also have u13(x) ≈ K13(x) = m(x)x1(12x2

3 −
3x2

1) ≥ cM−4. It follows that for sufficiently small c1, for sufficiently large M and all
ε ∈ (0, c1M

−7] we have f(ε, x) < −cM−8.

Case 1.4. x3 ∈ [M/4,M ], x1 = −M .
We have

u11(x) ≈ K11(x) = m(x)x3(12x2
1 − 3x2

3),

so u11(x) ≥ cM−4. We also have

u33(x) ≈ K33(x) = m(x)x3(6x2
3 − 9x2

1),
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so u33(x) ≤ −cM−4. Therefore for sufficiently small c1 ∈ (0, 1] and all ε ∈ (0, c1M
−7] we

have v
(ε)
11 (x) ≥ cM−4, v

(ε)
33 (x) ≤ −cM−4. Hence f(ε, x) ≤ −cM−8.

Case 1.5. x3 ∈ [1,M/4], x1 = −M .
We have

u13(x) ≈ K13(x) = m(x)x1(12x2
3 − 3x2

1),

so u13(x) ≤ −cM−4. We also have

u11(x) ≈ K11(x) = m(x)x3(12x2
1 − 3x2

3),

u33(x) ≈ K33(x) = m(x)x3(6x2
3 − 9x2

1),

so u11(x) ≥ cM−5, u33(x) ≤ −cM−5. Therefore for sufficiently small c1 ∈ (0, 1] and all

ε ∈ (0, c1M
−7] we have v

(ε)
11 (x) ≥ cM−5, v

(ε)
33 (x) ≤ −cM−5. Hence f(ε, x) ≤ −cM−8.

Case 1.6. x3 ∈ (0, 1], x1 = −M .
By similar arguments as in Case 1.5 we get u13(x) ≤ −cM−4, |u11(x)| ≤ cM−5,

|u33(x)| ≤ cM−5. Therefore for sufficiently small c1 ∈ (0, 1] and all ε ∈ (0, c1M
−7] we

have |v(ε)
11 (x)| ≤ cM−5, |v(ε)

33 (x)| ≤ cM−5. Hence for sufficiently small c1 ∈ (0, 1], for
sufficiently large M and all ε ∈ (0, c1M

−7] we have f(ε, x) ≤ −cM−8.

Finally in all 6 cases we get that for sufficiently small c1 ∈ (0, 1], for sufficiently large M

and all ε ∈ (0, c1M
−7] we have f(ε, x) ≤ −cM−8. By (63) we get W3(x) = v

(ε)
22 (x)f(ε, x) ≥

cx3M
−13 + cεM−8. By (61), (62) we have |W1(x) +W2(x)| ≤ cx3M

−15 + cεM−10. Recall

that H(v(ε))(x) = W1(x) + W2(x) + W3(x). It follows that there exists sufficiently small
c′1 = c′1(Λ) ∈ (0, 1] and sufficiently large M0 ≥ M1 ≥ 10 such that for any M ≥ M0 and

ε ∈ (0, c′1M
−7] and all x ∈ U1(M) we have H(v(ε))(x) ≥ cεM−8.

Let us fix the above M0 and M ≥M0 in the rest of the proof of this proposition.

Part 2. Estimates on U2(h).
We will use notation and results from Section 4 (Propositions 4.1-4.6). In particular

we choose a point on ∂D and choose a Cartesian coordinate system with origin at that
point in the same way as in Section 4 (see Figures 1, 4). Let h ∈ (0, h0], where h0 denotes
the minimum of constants h0 from Propositions 4.1-4.6. By Lemma 6.1 we may assume
x3 ≥ 0, by continuity we may assume x3 > 0. It follows that it is enough to estimate
H(v(ε))(x) for x ∈ S1(h) ∪ S2(h) ∪ S3(h) ∪ S4(h). We will consider 2 cases. Assume that
ε ∈ (0, 1].

Case 2.1. x ∈ S1(h) ∪ S2(h) ∪ S3(h).

If x ∈ S1(h)∪S3(h) we have (v
(ε)
13 (x))2 = u2

13(x) ≥ ch−3, v
(ε)
11 (x)v

(ε)
33 (x) = u11(x)u33(x)+

2εu11(x)− εu33(x)− 2ε2, |2εu11(x)| ≤ cεh−3/2, | − εu33(x)| ≤ cεh−3/2.
If u11(x) ≤ 0 or u33(x) ≤ 0 then u11(x)u33(x) ≤ 0 (recall that u11(x) + u33(x) =

−u22(x) > 0). If u11(x) > 0 and u33(x) > 0 then

u11(x)u33(x) ≤
(
u11(x) + u33(x)

2

)2

=

(
u22(x)

2

)2

≤ ch−1.

Hence f(ε, x) = −(v
(ε)
13 (x))2 + v

(ε)
11 (x)v

(ε)
33 (x) ≤ −ch−3 for sufficiently small h and all

ε ∈ (0, 1].

If x ∈ S2(h) we have u11(x) ≈ h−3/2, u33(x) ≈ −h−3/2. Hence for sufficiently small h

and all ε ∈ (0, 1] we have v
(ε)
11 (x) ≈ h−3/2, v

(ε)
33 (x) ≈ −h−3/2 and f(ε, x) ≤ −ch−3.

Hence for any x ∈ S1(h) ∪ S2(h) ∪ S3(h) for sufficiently small h and all ε ∈ (0, 1]

we have f(ε, x) ≤ −ch−3. We have v
(ε)
22 (x) ≈ −x3h

−3/2 − ε. It follows that W3(x) =
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v
(ε)
22 (x)f(ε, x) ≥ cx3h

−9/2 + cεh−3. We also have

|W1(x)| ≤ cx3h
−3/2| log h|

(
h−3/2h−1/2| log h|+ (2ε+ x3h

−5/2)x3h
−3/2| log h|

)
≤ cx3h

−7/2| log h|2 + cεh−1| log h|2,

|W2(x)| ≤ ch−1/2| log h|
(

(ε+ x3h
−5/2)h−1/2| log h|+ h−3/2x3h

−3/2| log h|
)

≤ cx3h
−7/2| log h|2 + cεh−1| log h|2.

Hence there exists sufficiently small h′1 such that for all h ∈ (0, h′1] and ε ∈ (0, 1] we have

H(v(ε))(x) ≥ cx3h
−9/2 + cεh−3.

Case 2.2. x ∈ S4(h).

For sufficiently small h and all ε ∈ [0, 1] we have W3(x) ≥ ch−1/2h−3 = ch−14/4,

|W1(x)| ≤ ch−1/2| log h|
(
h−3/2h−3/4| log h|+ h−3/2h−1/2| log h|

)
≤ ch−11/4| log h|2,

|W2(x)| ≤ ch−3/4| log h|
(
h−3/2h−3/4| log h|+ h−1/2| log h|h−3/2

)
≤ ch−12/4| log h|2.

So there exists sufficiently small h′′1 such that for all h ∈ (0, h′′1] and ε ∈ [0, 1] we have

H(v(ε))(x) ≥ ch−14/4.

Since u = v(0) is continuous in a neighbourhood of any x ∈ D × {0} we obtain (60).
Let us fix h1 = h′1 ∧ h′′1 in the rest of the proof of this proposition.

Part 3. Estimates on U3(M,h1, η).
Let us choose arbitrary point on ∂D and choose a Cartesian coordinate system in the

same way as in Part 2. Note that it is enough to estimate H(v(ε))(x) for x ∈ U ′3(M,h1, η) =
{(x1, x2, x3) : x2 = 0, x1 ∈ [−M,−h1], x3 ∈ (0, η]} and sufficiently small η = η(Λ,M, ε).

Let x ∈ U ′3(M,h1, 1/2). Note that dist(x, ∂D) ≥ h1. By formulas uij(x) =
∫
DKij(x1 −

y1, x2 − y2, x3)ϕ(y1, y2) dy1 dy2 and explicit formulas for Kij (see Section 2) we have

|u11(x)| ≤ cx3h
−5
1 , |u22(x)| ≤ cx3h

−5
1 , |u33(x)| ≤ cx3h

−5
1 , |u13(x)| ≤ ch−4

1 , |u23(x)| ≤ ch−4
1 ,

|u12(x)| ≤ cx3h
−5
1 . Note also that by our choice of coordinate system for any y = (y1, y2) ∈

D we have y1 > 0. From now on let us assume additionally that x = (x1, x2, x3) ∈
U ′3(M,h1, 1/2) is such that x3 ≤ |x1|/

√
6 (this condition implies 12x2

3 ≤ 2x2
1). For such

x = (x1, x2, x3) and any y = (y1, y2) ∈ D we have 12x2
3 − 3(x1 − y1)2 − 3(x2 − y2)2 ≤

−(x1 − y1)2 ≤ −x2
1 ≤ −h2

1.
It follows that

|u13(x)| =

∣∣∣∣CK ∫
D

(x1 − y1)(12x2
3 − 3(x1 − y1)2 − 3(x2 − y2)2)

((x1 − y1)2 + (x2 − y2)2 + x2
3)7/2

ϕ(y1, y2) dy1 dy2

∣∣∣∣
≥ C̃h3

1

M7
. (64)

The constant C̃ will play an important role in the rest of the proof and this is the reason
why it is not as usual denoted by c. Clearly, C̃ depends only on Λ.

Let us recall that in Parts 1 and 2 of this proof we have fixed constants M0, M ≥M0,
h1. At the end of Part 1 we have chosen a constant c′1 ∈ (0, 1]. Let us choose a constant
c1 to be

c1 = c′1 ∧
1

4
C̃h3

1, (65)
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where C̃ is a constant from (64). In the rest of the proof let us fix this constant c1 and

ε ∈ (0, c1M
−7]. The reason to define c1 by (65) is so that 2ε2 ≤ 2c2

1M
−14 ≤ 1

8 C̃
2h6

1M
−14

which implies

2ε3 ≤ 1

4

ε

2
C̃2h6

1M
−14, (66)

which will be crucial in the sequel.
Note that for sufficiently small η = η(Λ,M, ε) and x ∈ U ′3(M,h1, η) we have x3 ≤

|x1|/
√

6 and

v
(ε)
22 (x) = −ε+ u22(x) ≤ −ε+ cx3h

−5
1 ≤ −ε

2
,

v
(ε)
11 (x) = −ε+ u11(x) ≤ −ε+ cx3h

−5
1 ≤ −ε

2
.

We have

H(v(ε))(x) = v
(ε)
11 (x)v

(ε)
22 (x)v

(ε)
33 (x) + 2v

(ε)
12 (x)v

(ε)
23 (x)v

(ε)
13 (x)

−v(ε)
22 (x)

(
v

(ε)
13 (x)

)2
− v(ε)

11 (x)
(
v

(ε)
23 (x)

)2
− v(ε)

33 (x)
(
v

(ε)
12 (x)

)2
,

−v(ε)
22 (x)

(
v

(ε)
13 (x)

)2
≥ ε

2

C̃2h6
1

M14
, (67)

−v(ε)
11 (x)

(
v

(ε)
23 (x)

)2
≥ 0,∣∣∣∣v(ε)

33 (x)
(
v

(ε)
12 (x)

)2
∣∣∣∣ ≤ (cx3h

−5
1 )2(2ε+ cx3h

−5
1 ), (68)

|v(ε)
12 (x)v

(ε)
23 (x)v

(ε)
13 (x)| ≤ cx3h

−5
1 h−4

1 h−4
1 , (69)

|v(ε)
11 (x)v

(ε)
22 (x)v

(ε)
33 (x)| ≤ (ε+ cx3h

−5
1 )2(2ε+ cx3h

−5
1 ). (70)

Note that the right hand sides of (68), (69), (70) are bounded by 2ε3 + x3C(Λ, h1) (note
that h1 depends only on Λ so C(Λ, h1) = C(Λ)). By (66) and (67) we have 2ε3 ≤
−1

4v
(ε)
22 (x)

(
v

(ε)
13 (x)

)2
. We also have x3C(Λ, h1) < −1

4v
(ε)
22 (x)

(
v

(ε)
13 (x)

)2
for sufficiently

small η = η(Λ,M, ε) and x ∈ U ′3(M,h1, η). For such η and x we have

H(v(ε))(x) ≥ −1

2
v

(ε)
22 (x)

(
v

(ε)
13 (x)

)2
≥ ε

4

C̃2h6
1

M14
.

�

Lemma 6.3. Let ϕ be the solution of (1-2) for B(0, 1), u the harmonic extension of ϕ

and v(ε) given by (59). For M ≥ 10, h ∈ (0, 1/2], η ∈ (0, 1/2] we define

U1(M) = {x ∈ R3 : x2
1 + x2

2 ≤M2, x3 = M or x3 = −M}
∪{x ∈ R3 : x2

1 + x2
2 = M2, x3 ∈ [−M,M ] \ {0}},

U2(h) = {x ∈ R3 : x2
1 + x2

2 ∈ [(1− h)2, 1), x3 ∈ [−h, h]}
∪{x ∈ R3 : x2

1 + x2
2 ∈ [1, (1 + h)2], x3 ∈ [−h, h] \ {0}},

U3(M,h, η) = {x ∈ R3 : x2
1 + x2

2 ∈ [(1 + h)2,M2], x2
1 + x2

2 ≤M2, x3 ∈ [−η, η] \ {0}}.
Then we have

∃c1 ∈ (0, 1] ∃M0 ≥ 10 ∃h1 ∈ (0, 1/2] ∀M ≥M0 ∃η = η(M) ∈ (0, 1/2]

∀ε ∈ (0, c1M
−7] ∀x ∈ U1(M) ∪ U2(h1) ∪ U3(M,h1, η)

H(v(ε))(x) > 0.

Remark 6.4. It is important here that η does not depend on ε.
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M

M
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Proof. Existence of c1, M0, h1 and the estimate H(v(ε))(x) > 0 for x ∈ U1(M) ∪ U2(h1)
(where M ≥M0, ε ∈ (0, c1M

−7]) follow from the arguments from the proof of Proposition
6.2.

Let ε ∈ (0, 1]. Fix M ≥ M0 and let x ∈ U3(M,h1, 1/2). We may assume that x2 = 0,

x3 > 0, x1 < 0. We have H(v(ε))(x) = v
(ε)
22 (x)f(ε, x), where f(ε, x) = v

(ε)
11 (x)v

(ε)
33 (x) −

(v
(ε)
13 (x))2. We have u22(x) < 0 so v

(ε)
22 (x) = u22(x)−ε < 0. We also have |u11(x)| ≤ cx3h

−5
1 ,

|u33(x)| ≤ cx3h
−5
1 which gives

v
(ε)
11 (x)v

(ε)
33 (x) = (u11(x)− ε)(u33(x) + 2ε) < cx3h

−10
1 + cx3h

−5
1 .

Let us additionally assume that x3 is sufficiently small so that x3 ≤ |x1|−1√
6

. For such x by

the arguments from the proof of Proposition 6.2 we have |u13(x)| ≥ ch3
1M
−7 so |v(ε)

13 (x)|2 =
|u13(x)|2 ≥ ch6

1M
−14. Hence for sufficiently small η = η(M) and x ∈ U3(M,h1, η) we have

f(ε, x) < 0, which implies H(v(ε))(x) > 0. �

Proposition 6.5. Let ϕ be the solution of (1-2) for B(0, 1), u the harmonic extension of

ϕ and v(ε) given by (59). For M ≥ 10 put

ΩM = {x ∈ R3 : x2
1 + x2

2 ≤M2, x3 ∈ [−M,M ]} \ {x ∈ R3 : x2
1 + x2

2 ∈ [1,M2], x3 = 0}.
Let c1 and M0 be the constants from Lemma 6.3. Then we have

∀M ≥M0 ∀ε ∈ (0, c1M
−7] ∀x ∈ ΩM H(v(ε))(x) > 0.

Proof. On the contrary assume that there exists M1 ≥M0, ε1 ∈ (0, c1M
−7
1 ], z ∈ ΩM1 such

that H(v(ε1))(z) ≤ 0. By Lemma 6.3 there exists h1 ∈ (0, 1/2] and η1 = η1(M1) ∈ (0, 1/2]

such that ∀ε ∈ (0, c1M
−7
1 ], ∀x ∈ U1(M1) ∪ U2(h1) ∪ U3(M1, h1, η1) H(v(ε))(x) > 0.

Note that by v(0) = u and by Proposition 5.1 we have H(v(0))(x) > 0 for all x ∈ ΩM1 .
It follows that there exists ε2 ∈ (0, ε1] and z̃ ∈ ΩM1 \ (U1(M1) ∪ U2(h1) ∪ U3(M1, h1, η1))

such that H(v(ε2))(z̃) = 0 and H(v(ε2))(x) ≥ 0 for all x ∈ ΩM1 . This gives contradiction
with Theorem 1.6. �

As a direct conclusion of Propositions 6.2 and 6.5 we obtain
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Corollary 6.6. Fix C1 > 0, R1 > 0, κ2 ≥ κ1 > 0 and D ∈ F (C1, R1, κ1, κ2). Denote

Λ = {C1, R1, κ1, κ1}. Let ϕ(D) be the solution of (1-2) for D, u(D) the harmonic extension

of ϕ(D) given by (6-10) and v(ε,D) given by (59). Then we have

∃c1 = c1(Λ) ∈ (0, 1] ∃c2 = c2(Λ) > 0 ∃M0 ≥ 10 ∃h1 = h1(Λ) ∈ (0, 1/2] ∀M ≥M0

∀ε ∈ (0, c1M
−7] ∃η = η(Λ,M, ε) ∈ (0, (1/2) ∧ ε] ∃c3 = c3(Λ,M, ε) > 0,

∀x ∈ Q(M,D, ε) H(v(ε,D))(x) ≥ c3,

∀x ∈ Ω(M,B(0, 1)) H(v(ε,B(0,1)))(x) ≥ c3,

∀x ∈ Q4(D) H(u(D))(x) ≥ c2,

where (see Figure 8) Q(M,D, ε) = Q1(M) ∪Q2(M,D, ε) ∪Q3(M,D, ε),

Q1(M) = {x ∈ R3 : x2
1 + x2

2 ≤M2, x3 = M or x3 = −M}
∪{x ∈ R3 : x2

1 + x2
2 = M2, x3 ∈ [−M,M ] \ {0}},

Q2(M,D, ε) = {x ∈ R3 : (x1, x2) ∈ D, δD((x1, x2)) ≤ h1, x3 ∈ [−η, η]},
Q3(M,D, ε) = {x ∈ R3 : (x1, x2) ∈ Dc, x2

1 + x2
2 ≤M2, x3 ∈ [−η, η] \ {0}},

Ω(M,D) = {x ∈ R3 : x2
1 + x2

2 < M2, x3 ∈ (−M,M)} \ (Dc × {0}),
Q4(D) = {x ∈ R3 : (x1, x2) ∈ D, δD((x1, x2)) ≤ h, x3 = 0}.

proof of Theorem 1.1.
Step 1.

In this step we will use the notation from Corollary 6.6. We will show that for any
Λ = {C1, R1, κ1, κ2}, D ∈ F (Λ) and x ∈ R3 \ (Dc × {0}) we have H(u(D))(x) > 0.

Fix Λ = {C1, R1, κ1, κ2} where C1 > 0, R1 > 0, κ2 ≥ κ1 > 0 and fix D0 ∈ F (Λ). Let
{D(t)}t∈[0,1], D(0) = D0, D(1) = B(0, 1) be the family of domains defined by (16). By
Lemma 2.4 there exists Λ′ = {C ′1, R′1, κ′1, κ′2} where C ′1 > 0, R′1 > 0, κ′2 ≥ κ′1 > 0 such

that ∀t ∈ [0, 1] D(t) ∈ F (Λ′). Put v(ε,t) = v(ε,D(t)).
We will use Corollary 6.6 applied to Λ′ = {C ′1, R′1, κ′1, κ′1}. Fix M ≥ M0 ≥ 10 and

ε ∈ (0, c1M
−7]. Let

T = {t ∈ [0, 1] : H(v(ε,t))(x) > 0 for all x ∈ Ω(M,D(t))}.
Let Ω+(M) = {x ∈ R3 : x2

1 + x2
2 < M2, x3 ∈ (0,M)} and Ω−(M) = {x ∈ R3 : x2

1 + x2
2 <

M2, x3 ∈ (−M, 0)}. Let us make the following observation: H(v(ε,t))(x) > 0 for all

x ∈ Ω(M,D(t)) if and only if H(v(ε,t))(x) > 0 for all x ∈ Ω+(M). Indeed, if the latest

inequality holds then H(v(ε,t))(x) > 0 for all x ∈ Ω−(M) by Lemma 6.1 and H(v(ε,t))(x) >
0 for all x ∈ D(t)× {0} by Lewy’s theorem. It follows that

T = {t ∈ [0, 1] : H(v(ε,t))(x) > 0 for all x ∈ Ω+(M)}.
The reason to consider Ω+(M) instead of Ω(M,D(t)) is that Ω+(M) does not depend on
t. By Corollary 6.6 we have 1 ∈ T so T is nonempty. We will show that T is both open
and closed (relatively in [0, 1]), which implies that T = [0, 1].

By Lemma 2.5 and standard arguments, v(ε,t)(x) → v(ε,s)(x) for x ∈ Ω+(M), when
[0, 1] 3 t→ s.

Let us assume that {tn : n = 1, 2, . . .} ⊂ T and tn → t0 as n→∞. Then H(v(ε,t0))(x) ≥
0 for all x ∈ Ω+(M). By Corollary 6.6 H(v(ε,t0))(x) does not vanish identically in Ω+(M).

By Lewy’s theorem H(v(ε,t))(x) > 0 for all x ∈ Ω+(M). Hence t0 ∈ T , which implies that
T is closed.

Now, on the contrary, assume that T is not open. Then there exists t0 ∈ T and a
sequence {tn} such that [0, 1] 3 tn → t0 as n→∞ and tn /∈ T for any n = 1, 2, . . .. Hence

there exists a sequence of points xn ∈ Ω+(M) such that H(v(ε,tn))(xn) ≤ 0. After taking

a subsequence, if necessary, we may assume that xn → x0 ∈ Ω+(M) as n → ∞. If x0 ∈
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(D(t0))c × {0} then for sufficiently large n we get xn ∈ Q2(M,D(tn), ε)∪Q3(M,D(tn), ε)
and we get a contradiction to Corollary 6.6. If x0 ∈ Ω+(M) ∪ Q1(M) ∪ (D(t0) × {0})
then by standard arguments H(v(ε,tn))(xn) → H(v(ε,t0))(x0) ≤ 0 as n → ∞. If x0 ∈
Ω+(M) ∪ (D(t0) × {0}) then we get a contradiction with our assumption that t0 ∈ T . If
x0 ∈ Ω1(M) we get a contradiction to Corollary 6.6. So T is open.

It follows that for any fixed M ≥M0 ≥ 10 and ε ∈ (0, c1M
−7) we have H(v(ε,D0))(x) >

0 for all x ∈ Ω(M,D0). By taking ε → 0 we obtain that H(u(D0))(x) ≥ 0 for all

x ∈ Ω(M,D0). By the estimates of H(u(D0)) on Q4(D0) from Corollary 6.6 we obtain

that H(u(D0))(x) does not vanish near ∂D0 × {0}. Hence Lewy’s theorem implies that

H(u(D0))(x) > 0 for all x ∈ Ω(M,D0). Since M ≥ M0 ≥ 10 was arbitrary we get that

H(u(D0))(x) > 0 for all x ∈ R3 \ (Dc
0 × {0}).

Step 2.
By sign(Hess(u(y))) we denote a signature of the Hessian matrix of u(y). In this step

we will show that for arbitrary Λ = {C1, R1, κ1, κ1}, D ∈ F (Λ) and y ∈ R3 \ (Dc × {0})
we have sign(Hess(u(y))) = (1, 2) and ϕ is strictly concave on D.

Fix Λ = {C1, R1, κ1, κ1} where C1 > 0, R1 > 0, κ2 ≥ κ1 > 0 and fix D ∈ F (Λ). Let
ϕ be the solution of (1-2) for D, u the harmonic extension of ϕ. Let (x1, x2) ∈ D, put
x = (x1, x2, 0). Denote f(x) = u11(x)u22(x)−u2

12(x). By Lemma 4.7 u13(x) = u23(x) = 0,
u33(x) > 0. By Step 1 H(u)(x) > 0. Hence f(x) > 0. We have u11(x) +u22(x) +u33(x) =
0 so u11(x) + u22(x) < 0. This and f(x) > 0 implies that u11(x) < 0, u22(x) < 0.
Hence sign(Hess(u(x))) = (1, 2). Since H(u)(y) > 0 for any y ∈ R3 \ (Dc × {0}) we get
sign(Hess(u(y))) = (1, 2).

Inequalities f(x) > 0, u11(x) < 0, u22(x) < 0 give that ϕ(x1, x2) = u(x1, x2, 0) is strictly
concave on D.

Step 3.
In this step we will show that for any open bounded convex set D ⊂ R2 ϕ is concave

on D.
Fix an open bounded convex set D ⊂ B(0, 1) ⊂ R2. It is well known (see e.g. [9,

page 451]) that there exists a sequence of sets Dn such that Dn ∈ F (Λn) for some Λn =
{C1,n, R1,n, κ1,n, κ2,n} and

⋃∞
n=1Dn = D, Dn ⊂ Dn+1, n ∈ N, d(Dn, D) → 0 as n → ∞

(where C1,n > 0, R1,n > 0, κ2,n ≥ κ1,n > 0). Let ϕ(n), ϕ denote solutions of (1-2) for Dn

and D. By Step 2 ϕ(n) are concave on Dn. By Lemma 2.5 we have limn→∞ ϕ
(n)(x) = ϕ(x)

for x ∈ D. So ϕ is concave on D.
By scaling we may relax the assumption D ⊂ B(0, 1). �

7. Extensions and conjectures

proof of Theorem 1.5. a) It is well known that if ψr(x) = ψ(rx), for some r > 0 and all

x ∈ Rd then (−∆)α/2ψr(x) = rα(−∆)α/2ψ(rx) (see e.g. [4, page 9]). Fix x0 ∈ ∂D and

λ ∈ (0, 1). Put f(x) = ϕ(λx+ (1− λ)x0)− λαϕ(x). We have (−∆)α/2f(x) = 0 for x ∈ D
and f(x) ≥ 0 for x ∈ Dc. Hence f(x) ≥ 0 for x ∈ D.

b) Fix x, y ∈ D and λ ∈ (0, 1). Put z = λx+ (1− λ)y. Let l be the line which contains
x and y. Let x0 ∈ ∂D be the point on l which is closer to x than to y and y0 ∈ ∂D be the
point on l which is closer to y than to x. We have

z = y
|z − x0|
|y − x0|

+ x0

(
1− |z − x0|
|y − x0|

)
.

By a) we get

ϕ(z) ≥
( |z − x0|
|y − x0|

)α
ϕ(y) ≥

( |z − x|
|y − x|

)α
ϕ(y) = (1− λ)αϕ(y).
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We also have

z = x
|z − y0|
|x− y0|

+ y0

(
1− |z − y0|
|x− y0|

)
.

Again by a) we get

ϕ(z) ≥
( |z − y0|
|x− y0|

)α
ϕ(x) ≥

( |z − y|
|x− y|

)α
ϕ(x) = λαϕ(x).

�

Now we present some conjectures concerning solutions of (3-4).

Conjecture 7.1. Let α = 1, d ≥ 3. If D ⊂ Rd is an arbitrary bounded convex set then
the solution of (3-4) is concave on D.

It seems that using the generalization of H. Lewy’s result obtained by S. Gleason and
T. Wolff [20, Theorem 1] one can show this conjecture. Let α = 1, d ≥ 3 and D ⊂ Rd be
a sufficiently smooth bounded convex set such that ∂D has a strictly positive curvature,
ϕ the solution of (3-4) and u its harmonic extension in Rd+1. It seems that using the
method of continuity, in the similar way as in this paper, one can show that the Hessian
matrix of u has a constant signature (1, d−1). This implies concavity of ϕ on D. Anyway,
Conjecture 7.1 remains an open challenging problem.

Conjecture 7.2. Let d ≥ 2, D ⊂ Rd be an arbitrary bounded convex set and ϕ be the
solution of (3-4).

a) If α ∈ (1, 2) then ϕ is 1/α-concave on D.
b) If α ∈ (0, 1) then ϕ is concave on D.

Remark 7.3. For any α ∈ (1, 2), η ∈ (0, 1− 1/α) and d ≥ 2 there exists a bounded convex
set D ⊂ Rd (a sufficiently narrow bounded cone) such that the solution of (3-4) is not
1/α+ η concave on D.

Justification of Remarks 1.4 and 7.3. It is clear that it is sufficient to show Remark 7.3.
For any θ ∈ (0, π/2), d ≥ 2 let

D(θ) = {(x1, . . . , xd) :
√
x2

2 + . . .+ x2
d < x1 tan θ, |x| < 1}.

Let α ∈ (0, 2) and ϕ be the solution of (3-4) for D(θ).
By [29, Theorem 3.13, Lemma 3.7] for any ε > 0 there exists θ ∈ (0, π/2) and c > 0

such that
ϕ(x) ≤ c|x|α−ε, x ∈ D(θ). (71)

Theorem 3.13 and Lemma 3.7 in [29] are formulated only for d ≥ 3 but small modifications
of proofs in [29] give these results also for d = 2. (71) for any d ≥ 2 also follows from the
recent paper [7].

Fix d ≥ 2, α ∈ (1, 2), η ∈ (0, 1 − 1/α) and ε ∈
(

0, α2η
1+ηα

)
. There exists θ ∈ (0, π/2)

and c > 0 such that the solution ϕ of (3-4) for D(θ) satisfies ϕ(x) ≤ c|x|α−ε. Fix x0 =
(a, 0, . . . , 0) ∈ D(θ). If ϕ is 1/α+ η concave on D(θ) then for any λ ∈ (0, 1) we have

ϕ(λx0) ≥ λ
α

1+ηαϕ(x0) = λ
α− α2η

1+ηαϕ(x0).

On the other hand ϕ(λx0) ≤ cλα−ε|x0|α−ε, so

cλα−ε|x0|α−ε ≥ λα−
α2η
1+ηαϕ(x0),

which gives

λ
α2η
1+ηα

−ε ≥ ϕ(x0)c−1|x0|ε−α
for any λ ∈ (0, 1), contradiction. �
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We finish this section with an open problem concerning p-concavity of the first eigen-
function for the fractional Laplacian with Dirichlet boundary condition.

Let α ∈ (0, 2), d ≥ 1, D ⊂ Rd be a bounded open set and let us consider the following

Dirichlet eigenvalue problem for (−∆)α/2

(−∆)α/2ϕn(x) = λnϕn(x), x ∈ D, (72)

ϕn(x) = 0, x ∈ Dc. (73)

It is well known (see e.g. [13], [27]) that there exists a sequence of eigenvalues 0 < λ1 <
λ2 ≤ λ3 ≤ . . ., λn →∞ and corresponding eigenfunctions ϕn ∈ L2(D). {ϕn}∞n=1 form an
orthonormal basis in L2(D), all ϕn are continuous and bounded on D, one may assume
that ϕ1 > 0 on D.

Open problem. For any α ∈ (0, 2), d ≥ 2 find p = p(d, α) ∈ [−∞, 1] such that for
arbitrary open bounded convex set D ⊂ Rd the first eigenfunction of (72-73) is p-concave
on D. It is not clear whether such p = p(d, α) ∈ [−∞, 1] exists.

Any results, even numerical, concerning this problem would be very interesting.
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