ON CONCAVITY OF SOLUTIONS OF THE DIRICHLET PROBLEM
FOR THE EQUATION (—A)/2¢p =1 IN CONVEX PLANAR REGIONS

TADEUSZ KULCZYCKI

ABSTRACT. For a sufficiently regular open bounded set D C R? let us consider the
equation (—A)Y2p(z) = 1, ¢ € D with the Dirichlet exterior condition ¢(z) = 0,
x € D°. Tts solution, ¢(z) is the expected value of the first exit time from D of the
Cauchy process in R? starting from z. We prove that if D C R? is a convex bounded
domain then ¢ is concave on D. To show it we study the Hessian matrix of the harmonic
extension of ¢. The key idea of the proof is based on a deep result of Hans Lewy
concerning determinants of Hessian matrices of harmonic functions.

1. INTRODUCTION

Let D C R? be an open bounded set which satisfies a uniform exterior cone condition on
0D and let us consider the following Dirichlet problem for the square root of the Laplacian

(-A)p(z) = 1, weD, (1)
o) = 0, x € D", (2)
where we understand that ¢ is a continuous function on R2. (—A)l/ 2 in R? is given by
— ) = 5=lim._o+ [, S22 dy, whenever the limit exists.
A2 f 217T lim, o yaloe f(|3;) 3:JT(ZJ) d h he 1

It is well known that (1-2) has a unique solution, which has a natural probabilistic
interpretation. Let X; be the Cauchy process in R? (that is a symmetric a-stable process
in R? with o = 1) with a transition density p;(z) = 5=t(t>+|2|2)=%/2 and let 7p = inf{t >
0: X; ¢ D} be the first exit time of X; from D. Then p(x) = E%(1p), * € R?, where E®
is the expected value of the process X; starting from z, [18]. The function E*(7p) plays
an important role in the potential theory of symmetric stable processes (see e.g. [5], [4],
11]).

About 10 years ago R. Bafiuelos posed a problem of p-concavity of E*(7p) for symmetric
a-stable processes. The problem was inspired by a beautiful result of Ch. Borell about
1/2-concavity of E*(1p) for the Brownian motion.

The main result of this paper is the following theorem. It solves the problem posed by
R. Banuelos for the Cauchy process in R2.

Theorem 1.1. If D C R? is a bounded convex domain then the solution of (1-2) is concave
on D.

To the best of author’s knowledge this is the first result concerning concavity of solu-
tions of equations for fractional Laplacians on general convex domains. There is a recent
interesting paper of R. Banuelos and R. D. DeBlassie [1] in which the first eigenfunction of
the Dirichlet eigenvalue problem for fractional Laplacians on Lipschitz domains is studied
but in that paper superharmonicity and not concavity of the first eigenfunction is proved
(similar results were also obtained by M. Kafimann and L. Silvestre [22]). In [3] concavity
of the first eigenfunction for fractional Laplacians was studied but [3] concerns only boxes
and not general convex domains.

The research was supported in part by NCN grant no. 2011/03/B/ST1/00423.
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Now let D € R%, d > 1 be an open bounded set which satisfies a uniform exterior cone
condition on 0D, a € (0,2] and let us consider a more general Dirichlet problem for the
fractional Laplacian

(-2)*p(@) = 1.  weD, (3)
e(xr) = 0, x € D, (4)
where we understand that ¢ is a continuous function on R%. (=A)*/2 in R? for o € (0, 2)

is given by (—A)*/2f(x) = Ag_o lim_,o+ ly—z|>e % dy, whenever the limit exists,

Ad—o =2°T((d+a)/2)/(x¥?|T(—a/2)|). For a = 2 the operator (—A)®/2 is simply —A.
It is well known that (3-4) has a unique solution. It is the expected value of the first
exit time from D of the symmetric a-stable process in R<.

Remark 1.2. For o = 2 i.e. for the Laplacian, it is well known that if D € R¢ is a bounded
convex domain then the solution of (3-4) is 1/2-concave, that is /¢ is concave. This was
proved for d = 2 in 1969 by L. Makar-Limanov [32]. For d > 3 it was proved in 1983 by
Ch. Borell [8] and independently by A. Kennington [23], [24] using ideas of N. Korevaar
[25].

Remark 1.3. Let a € (0,2] and ¢ be a solution of (3-4) for D = B(0,7) C R%, d > 1 a
ball with centre 0 and radius » > 0. Then ¢ is given by an explicit formula [18] (see also
21], [17]) @(x) = Cp(r% — |z[>)*/2, € B(0,r), where Cp = T'(d/2)(2°T(1 4 a/2)['(d/2 +
a/2))~L. In particular ¢ is concave on B(0,7).

Remark 1.4. For any a € (1,2) and d > 2 there exists a bounded convex domain D C R?
(a sufficiently narrow bounded cone) such that ¢ is not concave on D. The justification
of this statement is in Section 7. In particular, this implies that the assertion of Theorem
1.1 is not true for the problem (3-4) for « € (1,2).

For general a € (0,2) and d > 2 we have the following regularity result.

Theorem 1.5. Let o € (0,2), d > 2 and let ¢ be a solution of (3-4). If D C R® is a
bounded convex domain then we have
a) for any xog € 0D, z € D, A € (0,1)

Az + (1 = N)zo) = Ap(z),
b) for any x,y € D, A € (0,1)
p(Az + (1 = A)y) = max (A%¢(z), (1 -X)%¢(y)).

The proof of this theorem is in Section 7. It is based on one tricky observation and
is much easier than the proof of Theorem 1.1. Clearly, Theorem 1.5 does not imply p-
concavity of ¢ for any p € [—o00, 1]. Some conjectures concerning p-concavity of solutions
of (3-4) are presented in Section 7.

Below we present the idea of the proof of Theorem 1.1. The proof is in the spirit of
papers by L. Caffarelli, A. Friedman [9] and N. Korevaar, J. Lewis [26] in which they study
geometric properties of solutions of some PDEs using the constant rank theorem and the
method of continuity. In the proof of Theorem 1.1 the role of the constant rank theorem
is played by the following result of Hans Lewy from 1968.

Theorem 1.6 (Hans Lewy, [31]). Let u(z1,x2,x3) be real and harmonic in a domain
of R3 and let H(u) denote the determinant of the Hessian matriz of u. Suppose H(u)
vanishes at a point xo € Q0 without vanishing identically in Q. Then H(u) assumes both
positive and negative values near xg.

The use of this result is the key element of the proof of Theorem 1.1. S. Gleason and
T. Wolff [20] generalized Theorem 1.6 to higher dimensions. Their result gives some hope
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that it is also possible to extend Theorem 1.1 to higher dimensions, see Conjecture 7.1 in
Section 7.

Let us come back to presenting the idea of the proof of Theorem 1.1. We show the
theorem for a sufficiently smooth bounded convex domain D C B(0,1) C R2, which
boundary has a strictly positive curvature (the result for an arbitrary bounded convex
domain follows by an approximation argument and scaling). Let us consider the harmonic
extension u of . Namely, let
T3
K@) = Ox o o

z € RY, (5)

where Cx = 1/(27), R3 = {z = (z1,22,23) € R®: 23 > 0}. Put u(z1,22,0) = (21, z2),
(z1,79) € R? and

u(z1, T2, 73) = / K(z1 —y1, 22 — Y2, 23)0(y1,y2) dy1 dya, (z1,22,23) € R3.  (6)
D

Note that K(z1—y1, T2—y2, x3) is the Poisson kernel of IRi for points x = (z1, z2,x3) € RZ’F
2
and (y1,y2,0) € OR3. By f; we denote %, by fi; we denote %aij. It is well known that

uz(x1,2,0) = —(=A)2p(z1,29), (x1,22) € D, so u satisfies
Au(z) 0, z € RY, (7)
uz(x) = -1, xeDx{0}, (8)
u(z) = 0, x € D x {0}, 9)

where Au = uq1 + u9g + uzs.

The idea of studying equations for fractional Laplacians via harmonic extensions is well
known. It was used for the first time by F. Spitzer in [35] and then by many other authors
e.g. by S. A. Molchanov, E. Ostrovskii [34], R. D. DeBlassie [14], P. Mendez-Hernandez
[33], R. Banuelos, T. Kulczycki [2], A. El Hajj, H. Ibrahim, R. Monneau [16], L. Caffarelli,
L. Silvestre [10].

In the next step of the proof we extend u to R3 = {x = (21,22, 23) € R3: 23 < 0} by
putting

u(ry, x9, x3) = u(x1, re, —23) — 213, (z1,72,x3) € R3. (10)
Note that u is continuous on R?® and for (x1,z2) € D it satisfies

u(zy, xa, h) — u(zy, 22,0)

U3—(3@17x270) = hli)r(r){ h
_h) —9h —
— i u(xy,x9, —h) h u($1,$270):_1'
h—0— h

By standard arguments it follows that u is harmonic in R UR? U (D x {0}) = R?\ (D¢ x
o).

Let Hess(u) be the Hessian matrix of v and H (u) = det(Hess(u)). The general strategy
of the proof is as follows:

1. We show that H(u)(x) > 0 for every z € R\ (D¢ x {0}).

2. We show that for x = (x1,22,0) € D x {0} the Hessian matrix has the following
form

urn(x) uiz(x) 0 o11(z1,22)  @r2(z1,22) 0
Hess(u)(z) = | wiz2(x) wu2e(x) 0 = | @1a(z1,22) p(zr1,22) 0
0 0 U33($) 0 0 U33(:L')

and us3(z) > 0.
Since Au(x) = 0, the two assertions above immediately imply that y11(z1,22) < 0,
w22(x1,x2) < 0 for (z1,29) € D, so ¢ is strictly concave on D.
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Almost entire proof is the justification of the first assertion. This is done by the con-
tinuity method i.e. by deforming the domain D to the unit disk B(0,1). The continuity
method requires the maximum principle for H(u) (Lewy’s theorem), estimates of u;; near
0D x {0} (see Sections 3, 4) and the result for the unit disk (see Section 5). Roughly
speaking, estimates of u;; justify that zeroes of H(u) do not "emerge” from 0D x {0}
along the deformation. Lewy’s theorem implies that zeroes of H(u) may not appear in
compact subdomains of R?\ (D¢ x {0}) along the deformation.

Below, we briefly present main steps in the continuity method. It may be easily shown
that H(u)(z) — 0 when z — x¢ € int(D°) x{0}. This fact causes some technical difficulties
in the proof. To deal with this problem we add an auxiliary harmonic function to wu.
Namely, for any & > 0 we consider v&) () = uP)(z) +e(—2}/2 — 23/2 4+ 22) (where u(P)
denotes u corresponding to D). We consider the family of domains {D(t)};¢[o,1) such that
D(0) = D, D(1) = B(0,1), all D(t) are smooth bounded convex domains which boundaries
have strictly positive curvature and 0D(t) — 0D(s) when ¢ — s in the appropriate sense.
For large M we put (see Figure 8)

QM,D(t)) ={z € R?: 23 + 23 < M* x5 € (—M, M)} \ ((D(t))¢ x {0}).
We fix large M and a sufficiently small € > 0 (e € (0, C(M)]). We define
T={tel0,1]: HoEPO)(z) >0 forall z e Q(M,D(t))}.

Next, one can show that 1 € T (the result for the unit disk). Then we prove that T is
closed, which follows from Lewy’s theorem applied to v(&P®). Next, we prove that T is
open (relatively in [0, 1]), which follows from a fact that for any fixed large M and any fixed
e € (0,C(M)] and all t € [0,1] we have H(v&P®))(z) > ¢ > 0 near (M, D(t)), where
¢ does not depend on ¢ (in the proof of this estimate the results from Section 4 are used).
This implies that 7' = [0, 1]. By taking ¢ — 0 (and using again Lewy’s theorem) we obtain
that H(u™)(z) > 0 for z € Q(M, D). Passing M — oo we obtain that H(uP))(z) > 0
for all R3\ (D¢ x {0}).

The paper is organized as follows. In Section 2 we present notation and collect some
known facts needed in the rest of the paper. Sections 3 and 4 are the most technical parts.

(D)

In Section 3 we estimate Pij

the Poisson kernel Pg(z,%) for a ball B corresponding to (—A)Y/2. Note that due to the
nonlocality of (—A)/? the corresponding harmonic measure Pg(z,%)dy is concentrated

not on 9B but on B¢. The results for gpz(]p) are obtained by estimating integrals involving
the Poisson kernel and its derivatives over different subdomains of D. This method is
very technical. Nevertheless this is a standard method for boundary value problems for
fractional Laplacians used by many authors e.g. K. Bogdan, Z.-Q. Chen, R. Song. It

seems that the reason the estimates of @ED), gogjp)

nonlocality of the equation (—A)'/2
(D)

near 0D. This is done by using an explicit formula for

are quite long and technical is just the
@ = 1. The results from Section 3 are used only in

Section 4, where estimates of ;. near dD x {0} are obtained. These estimates are also

ij

quite technical. The reason for this is that ul(]l.)) are singular near 0D x {0} and their
behaviour is quite complicated. For example, in an appropriate coordinate system (see
Figure 4) in a neighborhood of 0 € 9D x {0} we have ug?) (z) ~ (dist(x,dD x {0}))~3/2 for
some points, ug?) (z) vanishes for some other points and ugllj) (z) ~ —(dist(z, 0D x{0})) /2
for some other points. In order to control all 6 different ul(-jD) and ultimately control
H(v®P)) we have to consider many cases. The results from Section 4 are used only in the
proofs of Proposition 6.2 and Lemma 5.2. Let us point out, that the only aim of Section
3 and 4 is to obtain control of H(v")) and H(u(P)) near D x {0}.
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In Section 5 we prove that H(u(PO))(2) > 0 for x € R?\ (B¢(0,1) x {0}). u(BOD)
given by an explixit formula but it seems hard to show H(u(Z©1))(z) > 0 using d1rectly
this explicit formula. Instead, the proof is based on an auxiliary function and Lewy’s
theorem.

The most important part of the paper is Section 6, which contains the proof of the main
theorem. In particular, it contains the proof of positivity of H(u(P)) via the continuity
method, which was briefly described above. It is worth to emphasize that all the derivative
estimates obtained in Sections 3 and 4 are used in Section 6 only in the proof of Proposition
6.2. The results from Section 5 are used only in the proof of Proposition 6.5. Corollary
6.6, in which estimates of H(v(&P)) near dQ(M, D) (see Figure 8) and H(v&FO1)) in
Q(M, B(0,1)) are formulated, is a direct consequence of Propositions 6.2, 6.5. Let us point
out that all the results from Sections 3, 4, 5 are invoked in the proof of the main theorem
only through Corollary 6.6.

In Section 7 some extensions and conjectures are presented.

2. PRELIMINARIES

For z € R? and 7 > 0 we let B(z,7) = {y € R?: |y — 2| < r}. By a A b we denote
min(a,b) and by a V b we denote max(a,b) for a,b € R. For x € R¢, D c R we put
Sp(x) = dist(z,0D). For any 1 : R? — R we denote );(x) = M ( )s ij(w) = 69?1812] (),
i,j € {1,...,d}. We put R3 = {(z1,29,23) € R®: 23 > 0}, R® = {(z1,22,23) € R®:
x3 < 0}. The definition of a uniform exterior cone condition may be found e.g. in [19,
page 195].

Let us define a subclass of bounded, convex C?! domains in R? with strictly positive
curvature, which will be suitable for our purposes.

Definition 2.1. Let C; > 0, Ry > 0, k2 > k1 > 0 and let us fix a Cartesian coordinate
system CS in R?. We say that a domain D C R? belongs to the class F(C1, Ry, k1, K2)
when

1. D is convex. In C'S coordinates we have

{(y1,92) : 7 + 3 <RI} C D C{(y1,92) : v +y3 < 1}.

2. For any z € 9D there exist a Cartesian coordinate system C'S, with origin at x
obtained by translation and rotation of C'S, there exist R > 0, f : [-R,R] — [0,00) (R,
f depend on x), such that f € C*'[-R, R], f(0) =0, f/(0) = 0 and in CS, coordinates

{(y1,92) t y2 € [-R, Rl,y1 € (f(y2), R} = DN {(y1,92) : y1 € [-R, R, y2 € [-R, R}
3. For any y € 0D we have
k1 < K(y) < ko,

where k(y) denotes the curvature of 9D at y.
4. For any y, z € 0D we have

[K(y) = w(2)| < Cily — =]
For brevity, we will often use notation A = {C1, Ry, k1, ke} and write D € F(A).

Let C; >0, Ry > 0, ko > k1 > 0 and put A = {C1, Ry, k1,k2}. Let D € F(A). For
any y € 0D by 7i(y) we denote the normal inner unit vector at y and by f(y) we denote
the tangent unit vector at y which agrees with negative (clockwise) orientation of 9D. We
put e; = (1,0), e2 = (0, 1).

It may be easily shown that there exists R = R(A) such that for any y € D, dp(y) < R
there exists a unique y* € 9D such that |y—y*| = dp(y). For any y € D such that dp(y) <
R we define 7i(y) = 7(y*), T(y) = T(y*). For any ¢ € C2(D), y € D, v1(y),v2(y) € R

(y

and 9(y) = v1(y)er +va(y)ez we put 35 (y) = vi(y)v1(y) +v2(y)ea(y), (vecall that v;(y) =
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FIGURE 1
%(y))' Similarly, for any wq(y), w2(y) € R and @(y) = wi(y)er + wa(y)ez we put

L0 (y) = v1(y)wi ()11 (y) + va(y)wa(y)as(y) + (v1(y)wa(y) + valy)wi (y))dia ().

Lemma 2.2. Let C; > 0, Ry > 0, ko > K1 > 0 put A = {C1, Ry, K1, K2} and let us fix
a Cartesian coordinate system CS in R?. Fiz D € F(A) and xo € 0D. Choose a new
Cartesian coordinate system CSy, with origin at xo obtained by translation and rotation
of C'S such that the positive coordinate halflines yy, yo are in the directions 7i(zo), T(zo)
respectively.

From now on all points and vectors are in this new coordinate system CSy,, in particular

7(0,0) = (1,0) = e1, T(0,0) = (0,1) = ey. For any y € dD define a(y) € (—m, 7] such
that T(y) = sina(y)e; + cosa(y)es (this is an angle between ey and T(y)). For any
y € D with 6p(y) < R define a(y) = a(y*), where y* € D is a unique point such that
ly —y*| = dp(y)- i

There exists rg = ro(A) < RA(1/2), c1 = c1(A), ca = ca(A), c3 = c3(A), ca = ca(N),
cs = cs(A), cg = c(A), f: [-r0,70] — [0,00) such that f € C*1[—rg,70], f(0) = 0,
1(0) =0, caro < 1/4 and for any fixed r € (0,10] we have (see Figure 1)

L A(,y2) s (n—r)?* +y3 <r’} C D,

W= {(y1,92) : g2 € [=r 7]y € (f(w2), 7]} = D0 {(w1,92) - w1 € [=r,7), 92 € [, 7]}
2. For any y € W we have a(y) € [—7/4,7/4] and

cilyz| < [sina(y)| < ealyel,

T(y) = sina(y)ey + cos a(y)es, (11)
ni(y) = cosa(y)er — sin a(y)es. (12)
3. For any ya € [—r,r] we have

c3ys < fly2) < cays.

4. For anyy € W we have e; = cosa(y)ii(y) + sina(y)T(y), es = —sina(y)ii(y) +
cosa(y)T(y). For any ¢ € C2(D) and y € W we have

gﬁ ) = sina(yhin(y) + cosaly)ia(y), (13)

9y

8n() = cosa(y)P1(y) — sina(y)Pa(y), (14)
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() = cosaly) g () +sinaln) 25 w)
Gal) = ~sina(s)5() + cosal) S50,
2 2 2
Unl) = oot a(y) 55 ) + i aly) L) + 2sinaly) cosaly) == -(y),
2 2 2
vmly) = costa(y) TE ) + sin® aly) 3L (0) — 2sinaly) cosaly) (),
2 2 2
baln) = (eostaly) = sin? () () = sina(y) cosa) (G )~ S50

5. For any y € {(y1,y2) € W : ya > 0} we have

es(f () —v2) f () < op(y) < cs(fHyn) —v2) f (),
where f~1: [0, f(r)] — [0,7].

This lemma follows by elementary geometry and its proof is omitted.

Lemma 2.3. Let C; > 0, Ry >0, kg > k1 > 0 and put A = {C1, Ry, k1, Kk2}. There ezists
a constant ¢ = c¢(A) such that for any D € F(A) we have

/ (551/2(35) dzx < c. (15)
D

Proof. By Definition 2.1 we have B(0,R;) C D C B(0,1). Let xy € 9D. By convexity of
D the convex hull of B(0, R1) U {xo} is a subset of D. Using this fact and D C B(0,1)
one may easily show that for every x in the line segment between 0 and xg we have
|z — x0| < ¢dp(x), where ¢ depends only on R;. Hence 551/2(1‘) < %z — 29| 71/2. Now
(15) easily follows by using polar coordinates with centre at 0. U

In the sequel we will use the method of continuity (cf. [26, page 20], [9]). Roughly
speaking, we will deform a convex bounded domain D to a ball B(0,1). To do this we
will consider the following construction. Let Cy > 0, Ry > 0, kg > k1 > 0. For any
D € F(Cy, Ry, k1, k2) and t € [0, 1] we define

D(t) ={z: Jye D,z € B(0,1) such that z = (1 — t)y + tz}. (16)

Lemma 2.4. For any C; > 0, Ry > 0, k2 > k1 > 0 there exists C] > 0, R} > 0,
kh > K} > 0 such that for any D € F(C1, Ry, k1,k2) and any t € [0,1] we have D(t) €
F(C}, Ry o)),

This lemma seems to be standard, similar results are well known (cf. Appendix in
D. Gilbarg and N. Trudinger’s book [19], pages 381-384 or [9, proof of Theorem 3.1}).
Therefore we omit its proof.

Now we state some properties of the solution of (1-2) and its harmonic extension which
will be needed in the rest of the paper.

Let D C R? be an open bounded set and ¢(P) be the solution of (1-2) for D. Then the
following scaling property is well known [4, (1.61)]:

0 Plaz) = ap'P)(z), xe€D,a>0. 17)
For any open bounded sets Dy, Dy C R? put d(D1, D3) = [sup{dist(z,0Ds) : = €
0D1}] V [sup{dist(z,0D1) : © € dD>}].

Lemma 2.5. Let {D,}>° be a sequence of bounded convexr domains in R? and ©Pr) pe
the solution of (1-2) for D,,. If d(Dy, Do) — 0 as n — oo then for any x € Dy we have
©Pr) () = pPo)(z) as n — occ.
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This lemma seems to be well known and follows easily from (17) so we omit its proof
(in fact it holds not only for convex domains but we need it only in this case).

Lemma 2.6. Let Cy >0, Ry >0, ko > k1 > 0 and put A = {C1, Ry, k1, ke}. There exist
a constant ¢; = c1(A) and an absolute constant cy such that for any D € F(A) we have

2
plx) < —, zeD,
T
e1dy’(x) < ple) < 29 *(2), we D,
where ¢ is the solution of (1-2) for D.

Proof. We have D C B(0,1) so for any x € D we get

2
¢(x) = E*(1p) < E*(TB(0,1)) = ;(1 — |z}

Let € D and z* € 9D be a point such that |z — 2*| = dp(z). Put z = z* — 7n(z*),
where 7i(z*) is the normal inner unit vector at z* (clearly |z — 2*| = 1). By convexity of
D we get B(z,1) C D¢. Put

U={yeR?: 1<|y—z <3}

Since D C B(0,1) we get diam(D) < 2. Clearly, * € 9D NoU which implies that D C U
and dp(x) = dy(x). By [13] there exists an absolute constant ca such that

o) = B*(p) < B* (1) < cafy/*(x) = 28y (2).
Now we will show the lower bound estimate of . Since D C B(0, 1) we have dp(z) < 1.
Let x € D. If 6p(x) > 19, where ro = r9(A) is the constant from Lemma 2.2 then
2 2

p(@) = B*(rp) 2 B* (t(ary) = —10 2 ~rody” (a).
If 5p(z) < ro then we may choose a coordinate system as in Lemma 2.2 (see Figure 1)
and assume that z = (21,0), dp(x) = z1. Put B = B((r0,0),r9). By Lemma 2.2 we have
B C D. Clearly x € B and dp(x) = dp(x) = x1. It follows that

2 2 2
o(2) = E(1p) > B*(rp) = = (1} = |(r0,0) = (@1,0)P) " > Zrg 5% (@).
O

Lemma 2.7. Let Cy >0, Ry > 0, ke > k1 >0, D € F(C1, R, K1, Kk2), ¢ be the solution of
(1-2) for D and u the harmonic extension of ¢ given by (6-10). For any (x1,x2,73) € R3
we have H(u)(x1,x2, —x3) = H(u)(z1, 22, 23).

Proof. For © = (z1,22,23) put & = (z1,22,—x3). For € R} we have u;(#) = u;(z
for i = 1,2,3, u12(2) = uia(x), uiz(z) = —uis(x), ues(&) = —uos(x). Hence H( )( )
H (u)(x).

ons

We recall the definition of a-harmonic function, o € (0,2). A Borel function h on R?
is said to be a-harmonic on open set D C R® if for any o € RY, r > 0 such that
B(xp,7) C D we have

W) = / Py(x — w0,y — 20)h(y) dy,
Be<(zo,r)

where the integral is absolutely convergent and P, (x,y) is the Poisson kernel for a ball
B(0,7) corresponding to (—A)®/2. The explicit formula for the Poisson kernel is well
known, see e.g. (1.57) in [4]. For a = 1, d = 2 the Poisson kernel for B(z, s) is given by
(19). It is well known that h is a-harmonic on open set D C R¢ if and only if h is C2 on
D and (—A)*2h(z) = 0 for any € D. A Borel function i on R? is said to be singular
a-harmonic on open set D C R if it is a-harmonic on D and h = 0 on D°.
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We will need the following formulas of derivatives of K(z) = Crag(x? + 23 + 23)~3/2:

Ki(z) = —3Ckaswi(z]+ a5+ 23)"2,

Ko(z) = —3Cgwswa(a} +a3+a3) %2,

Ky(2) = Cx(a}+23—203)(a3 + a3 +23) /2.
Kii(z = CKx3(12x% — 31‘% — 31‘%)(1’% + QJ% + .%'%)_7/2,

C’ng(llrg — 31’% — Smg)(:ﬁ + 1:% + x%)_”Q,

(z)
(z) =
Ks3(z) = Cgx3(6x3 — 927 — 923) (2% + 22 + x%)77/2.
(x) 15C K a3z zo(2? + 23 + 22)77/2,
(z) Crw1(1222 — 322 — 3a2) (23 + 2% + 22)77/2,
Kog(z) = Cgxo(1223 — 322 — 323) (2% + 23 + x?),)*?/Z.

Remark 2.8. All constants appearing in this paper are positive and finite. We write
C =C(a,...,z) to emphasize that C' depends only on a,...,z. We adopt the convention
that constants denoted by ¢ (or ci, co, etc.) may change their value from one use to the
next.

Remark 2.9. In Sections 3, 4 and in the proof of Proposition 6.2 we use the following
convention. Constants denoted by ¢ (or cj, 2, etc. ) depend on A = {C1, R1, k1, K2},
where A = {C1, Ry, K1, ko } appears in Definition 2.1. We write f(z) ~ g(x) forz € A C R?
to indicate that there exist constants ¢; = ¢1(A), ca = c2(A) such that for any x € A we
have ¢1g(x) < f(x) < cag(x) (in particular, it may happen that both f, g are positive on
A or both f, g are negative on A).

3. ESTIMATES OF DERIVATIVES OF ¢ NEAR 0D

In this section we obtain estimates of ¢;, ¢;; near D. These results are used in this
paper only in Section 4, where the behaviour of u;; near 0D x {0} is studied. To obtain
estimates of ¢;, ;; we use the well known representation (18) formulated below. This
formula involves the Poisson kernel P(x,y) for a ball corresponding to (—A)'Y/2. Let us
recall that due to nonlocality of this operator the support of the corresponding harmonic
measure P(z,y) dy for a ball B is equal to B¢. This makes proofs in this section quite long
and complicated because we have to obtain estimates of integrals involving the Poisson
kernel and its derivatives over different subdomains of D. Most of the technics used in
this section are similar to the standard methods used in papers by Z.-Q. Chen, R. Song
[12], T. Kulczycki [28] and K. Bogdan, T. Kulczycki, A. Nowak [6]. These methods were
used in estimates of the Green function corresponding to (—A)®/2, o € (0,2) on smooth
domains [12], [28] and in estimates of gradient of a-harmonic functions [6].

It should be mentioned that similar estimates of derivatives of a-harmonic functions
were simultaneously obtained by the author’s student G. Zurek in his Master Thesis [36].

The most difficult part of this section is the proof of Lemma 3.7. In this lemma estimates
of ¢a2(1,0) are obtained (yy axis is tangent to the boundary of D at (0,0) € 9D, see
Figure 3). To the best of author knowledge the idea of the proof is new. Roughly speaking,
the proof is based on the representation

p22(71,0) = Py((x1,0),y)p2(y) dy
D\B
and the precise control of derivatives of ¢ in normal and tangent directions in a small
neighborhood of (0, 0).
In the whole section we fix C; > 0, Ry > 0, ko > k1 > 0, D € F(C1, Ry, K1, kK2) and
zg € 0D. We put A = {C4, Ry, k1, k1}. ¢ is the solution of (1-2) for D. Unless it is stated
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otherwise we fix the coordinate system CS;, and notation as in Lemma 2.2 (see Figure
1). In particular xg is (0,0) in CSy, coordinates.

Let r € (0,79}, 2= (r,0), s € (0,r], B = B(z, s) (where rg is the constant from Lemma
2.2). It is well known (see e.g. [4, (1.50), (1.56), (1.57)]) that

o) =ha)+ [ Pla)owdy, e B (18)
where h(z) = Cp(s* — |z — 2|?)Y/2, € B,

(52— — =) .
(y — 22 — s2)12z — y2’ z € B, ye (B), (19)

P(z,y) = Cp

Cp = 2/7‘(, Cp = T2,
We have hi(z) = Cp(r — x1)(s> — |z — 2|>)7'/2, € B. Put Pi(z,y) = %P(w,y),

i=1,2. For any = € B, y € (B)¢ we have Pi(x,y) = A(z,y) + E(z,y) where

(2 = fo = =) V(a1 — 1)
(v = =P =Pl —yP

(5> — & = 2[*)"*(21 —y1)
(ly — 2> = s2) 2z —y[*

In this section we use only these geometric properties of the domain D which are stated
in Lemmas 2.2, 2.3 and additionally facts that D C B(0,1) and D is convex. Let us
recall that all constants in the assertions of Lemmas 2.2, 2.3 depend only on A. Hence
all constants in estimates in this section depend also only on A. Let us recall that in the
whole section we use convention stated in Remark 2.9.

Alz,y) = Cp (20)

E(z,y) = —2Cp (21)

Lemma 3.1. There exists 1 € (0,79/4], 11 = r1(A) such that for any x1 € (0,r1] we have
v1(x1,0) =~ xfl/Q.

Proof. Put r = rg. We will use (18) for s = r, in particular B = B(z,r). Note that for
x = (71,0) we have 72 — |z — 2|2 = 21 (r + |21 — 7|) < 2rz;. Put

) = 15(0) [ Pla)e)dy+ 15-@)pla), @ € B,
We have k(z) > 0 on R2, by (18) k(x) < ¢(x) on B and k is 1-harmonic on B. For
definition and basic properties of a-harmonic functions see Section 2 and [4, pages 20-21,
61]. The fact that k is 1-harmonic follows from [4, page 61]. By [6, Lemma 3.2] (cf. also
[30]) and Lemma 2.6

k 0 k 0 _
ki(x1,0) <2 (21,0) <2 #(21,0) < cx, 1/2, for x1 € (0,7].
Ty Ty
By the formula for hy and the formula for r? — |z — z|? we get hi(x1,0) = Cg(r —

x1)(2r — xl)_l/zxfl/Q < CBr1/2x;1/2. Hence ¢1(21,0) = hi(z1,0) + k1(z1,0) < cxfl/z

for x; € (0,r/4].

What remains is to show that ¢i(z1,0) > CZE1_1/2. For x; € (0,7] we have ¢1(x1,0) =
Jge P1((21,0),y)¢(y) dy + hi(z1,0). We will estimate [5. Pro.

Let 21 € (0,f(r/2) A f(—7/2)]. By Lemma 2.2 we have f(r/2) < c4(r/2)? < r/16
(because cyr < 1/4), so o1 € (0,7/16]. Note that f(r/2) A f(—7/2) > c3r?/4, where c3
and 7 = rg are constants from Lemma 2.2, c372/4 depends only on A. Let p; € (0,7/2] be
such that f(p1) = x1, p2 € [-7r/2,0) be such that f(p2) = z1 (recall that f is defined in
Lemma 2.2). By Lemma 2.2 f(x1) < c42? < (1/2)21, f(—21) < (1/2)21, s0 p1 > 1 and

p2| > z1. Let fi : [—r,7] = R be defined by fi(y2) = r — (r2 — y2)1/2. Put (see Figure 2
2
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Y2 oD

Dy
Y1

FIGURE 2

Dy = {(y1,92): y2 € [—21, 2], 51 € (f(y2), f1(y2))}

Ds {(1,92) + y2 € (w1,p1] U [p2, —21), 91 € (f(y2), fr(y2) A w1)},
Ds = D\(D1UD2UB).

Note that fD\B A((21,0),y)¢(y) dy > 0 and [}, E((21,0),y)¢(y) dy > 0, because we have

A((x1,0),y) >0 for y € D\ B and E((21,0),y) > 0 for y € Ds.
Let us recall that we use (18) for s = r. We have fi(y2) < y3/r = cy3. By Lemma 2.6

o(y) < 0532(y). For y € Dy U Dy we also have dp(y) < y1 < fi(y2) < cy3. It follows that
o(y) < clya| for y € Dy U Dsy. Note that for y € Dy we have |y2| < x1 so ¢(y) < czy.
Note also that |y — 2|> — 2 = (Jy — 2| + r)(ly — 2| — 7). This is bounded from above
by 3r(fi(y2) — y1) and from below by r(f1(y2) — y1)/2. Hence for y € D; U Dy we have
ly — 2|? —r? = fi(y2) — y1. For y € Dy we have

0<yi < film) = & <3<
Y1 = J1l2 —T+(T2_x%)1/2_ =16

—to
8

because z1 € (0,7/16]. Hence for y € Dy we have |z —y| > |z1 — y1| > 1521/16 and
|z1 — y1| < x1. It follows that
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dy
Ly =22 =12

f1(y2)
3/2/ dyz/ (Fi(y2) — 1) Y2 dy
—x1 fly

= 2z 13/2/ 1 (f1(y2) —f(y2))1/2 dya

B 0o | < e [
D1 D

Q

1/2
CfEl .

IN

For y € Dy we have [& —y| = ((z1 — y1)> +43)"/? > |y2| and |21 —y1| < [a1| + |y1| < 221
Note also that by Lemma 2.2 we have p1 < ¢/z1 A (1/2), |p2] < ey/T1 A (1/2) s0

e/TIN(r/2) fi(y2)Az1
cxy? / dy2y23/f (f1(y2) —y1) ™2 dyn

1 (y2)

IN

E((21,0), y)¢(y) dy‘
Do

3/2
Cl‘l

IN

eV/TTA(r/2)
/ uy(F1(y2) — £(y2) ! dys

z1

1/2
< cwl/,

(we omit here fp;m ... because it can be estimated in the same way).
We have

v1(x1,0) = hi(z1,0) + Acp—i—/ Ep+ Ep+ Eop.
D\B D1 Dy D3

By the formula for h we easily get hj(x1,0) > (2\/5)_1037“1/2561_1/2. It follows that
o1(21,0) > (2\[) Lopr! 1/2_cx}/2 1/2 <<2\[) Logr!/ _cml)'

Put ¢ = (2\/5)_1037"1/2. For sufficiently small 21 we have ¢; —cz1 > ¢1/2 and ¢1(x1,0) >
(01/2):1:1_1/2 (one can take x1 < rq:= (¢1/(2¢)) A (r/4)). O

Lemma 3.2. Put ry =ro/4. For any z1 € (0,r1] we have |p2(z1,0)| < ca:}/2| log x1].

Proof. Put r = 7‘0. We will use (18) for s = r, in particular B = B(z,r). Let z; € (0,r/4].
We have WZ(mla ch P2 :Ela 0),y)(p(y) dy + h2($1a 0)7 h2($1, 0) =0, PQ((:Ela 0)>y) =
2C’p(‘y( Z|2‘x 2P) 2y y € (B). Let fi be such as in the proof of Lemma 3.1. Put

)=yt

Dy = {(y1,92) : y2 € [~z 1], 51 € (f(y2), fi(y2)},

Dy = {(y1,92) : y2 € (x1,7/2]U[=7/2,—z1), 51 € (f(y2), [1(y2))},

Ds = D\ (DyUDyUB).
By the same arguments as in the proof of Lemma 3.1 for = = (21, 0) we have 72 — |z — 2|? <
2rx1 and for y € Dy UDs we have |y —z|2 — 12 = f1(y2) —y1. Note also that for y € D1 U Dy

we have 0p(y) < 11 < fi(y2) < cys so (by Lemma 2.6) ¢(y) < clys|. For y € Dy we have
ly2| < 21 s0 ¢(y) < cxy and |z — y| > 3z1/4. Hence

—3/2 dy
/Dl Py((21,0),y)p(y )dy‘ <cxy /D1 (ly — 2|2 —7"2)1/2'

By the same estimates as in the proof of Lemma 3.1 this is bounded by cx;

1/2
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For z = (21,0) and y € Dy we have |z — y| > yo and f1(y2) < cy. It follows that

f1(y2)
Ao < e [ s [ () -2
b 2)
Y C%// 2(f1(y2) — f(y2))/? dys
< cail? | 1o
>~ 1 g$1|

For x = (21,0), y € D3 we have |y — z|?> — %2 = (Jy — z| + r)ds(y) > rdp(y) and
yo/lz —y|* <z —y|™3 < (r/2)73. Put By = {w ¢ B:dp(w) <2}. Since D C B(0,1) we
have D\ B C B;. Hence

2
Py((21,0), dy| < 1/2/ 55" (y) dy = 1/2/ L dp=ca}?,
2((21,0),9)0(y) y’ S cry 5 5 () dy =cx; - p = cxy

D3
It follows that |@a(z1,0)| < cw}ml log z1]. O
In the following corollary we simply restate Lemmas 3.1 and 3.2 for an arbitrary point
iny € D (with dp(y) < r1). Let us recall that T'(y), 7i(y) are given by (11), (12) and
2L(y), G5 (y) are given by (13), (14).
By Lemmas 3.1, 3.2 and 2.2 we obtain

Corollary 3.3. There existsry € (0,79/4], 11 = r1(A) such that for anyy € D, 0p(y) < r1
we have

W o~ 5 ) (22)
Z;’;@)' < 52(y) g dn (), (23)
Vo) < 5 (). (24)

Lemma 3.4. For any y € D we have |Vo(y)| < 6551/2@).

Proof. Let 11 = r1(A) be a constant from Corollary 3.3. If y € D satisfies dp(y) < r1 then
the assertion follows from Corollary 3.3. Fix yg € D such that dp(yo) > 1 and put B =
B(yo,r1). We are going to estimate |Vo(yo)|. Fory € B we have p(y) = h(y)+k(y), where
h(y) = Cp(rf =y —yol*)"/* and k(y) = 16(y) [\ 5 Py — o, 2 = y0)(2) dz + 1pe(y)o(y),
where P is given by (19) with s = r;. Clearly Vh(yo) = 0. k is a 1-harmonic function on
B and k(y) < ¢(y) < 2/7 (the last inequality follows from Lemma 2.6). By [6, Lemma

3.2] [Vk(yo)| < 2k(yo)/r1 < 4/(mr1) < 4652 (y)/ (zr1). O

The definition of a-harmonic functions (see Section 2) on an open set U C RY demands
that the function is defined on the whole R?. 1, oo are well defined on D and also on
D\ OD. 1, @y are not well defined on 9D but 9D has Lebesgue measure zero. One may
formally defined ¢ = @2 = 0 on dD. For the definition of singular a-harmonic functions,
see Section 2.

Lemma 3.5. 1, @2 are singular 1-harmonic on D.

The proof of this lemma is omitted. By standard arguments (translation invariance and
regularity of o) it can be easily shown that (—A)'/2 (g—;) (x) = 82’1- ((=A)2p) (z) =0
for x € D.

Remark 3.6. @11, w22 are not 1-harmonic on D because they are not locally integrable on
R? (see Corollary 3.10).
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FIGURE 3

Lemma 3.7. There exists ro € (0,70/4], 72 = r2(A) such that for any x1 € (0, r2] we have
(,022(.%1, 0) ~ —x;l/Q.

Proof. Put r = rg. Let r; be the constant from Corollary 3.3. In this proof we take
s € (r— (r1/2)%,r), ie. 0 <r—s < (r1/2)%2 Recall that z = (r,0), B = B(z,s)
and P is given by (19). For any z; € (r — s,7] by Lemma 3.5 we have ¢y(z1,0) =
Jong P((21,0),5)¢2(y) dy. It follows that @as(21,0) = [ g P2((21,0),y)p2(y) dy. We
have Pa((x1,0),y) = 2CP(Iy(iil_Q‘f;;)‘f/)zll/jgzl“' Take z1 = /r — s (we have \/r —s < 1r1/2).
Let f1: [—s,s] = R be defined by fi(y2) = r — v/s2 — y5. Put (see Figure 3)

D1 = {(y1,y2): v2 € [~z1,z1], 91 € (f(y2), f1(¥2))},

Ds {(Wi,m2) : g2 € (21,m1/2] U [=r1/2, —21), 91 € (F(32), f1(y2))},

Dy = D\(D1UD2UB).
By Lemma 2.2 we have for y € D1 U Do

9o

2(y) = cosaly) 24(y) ~ sinaly) 55 ().

Note that by definition of s we have dp(y) < r1 for y € Dy U Dy. By Corollary 3.3 we get
for y € D1 U Do

dp

2% )] < et = 10108t ~ 02))
and

0% )~ (1 Flum) ™2
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Hence

cosa<y>§;’;<y>] < ey — F(y2)) | log(yr — F(u2))
and

—sina() 2 () ~ —unlr — F(32) >

Note also that for y € Dy U Dy we have (|y — z|?> — s2)/2 = (—=y1 + f1(y2))"/%. Recall that
we have chosen z1 = +/r — s. It follows that

. 0
~ [ P10 sinal) G5y
1
_ 1 fi(y2)
~ -y dyzy%/f dyr (—y1 + [i(2)) ™2 — F(y2) 2~ =2y,
—11

(y2)

because f:(:c —a)"Y2(b — x)~Y? dx = const.

Similarly,
) dy
- P2((:r1,0),y)sma(y)%(y)dy
r1/2 f1(y2)
~ o) / datz /f( ) dyr (=1 + A(y2) 2 — Flya) VP~ =l
Y2

On the other hand we have

/| Pil(10).0) cosaly) 22 () dy\

B T f1(y2)
cxy 2 dy2y2 /f( ) dyr (=1 + f1(y2)) "2 (1 — £(2))?log(yr — f(32))]
—x1 Y2

IN

IN

cw}/Q\ log 1|,

/ Pil(@1.0).0) cosaly) 22 (1) dy‘

IN

r1/2 f1(y2)
cxi/z/ dyz?/2_3/ dyi (—y1 + f1(y2)) Y2 (y1 — f(y2))Y?|log(yr — f(y2))]

f(y2)

IN

cxi/z\ log z1|°.

By Lemmas 2.3, 3.4 we obtain

Py((21,0),y)p2(y) dy‘ <y | 65 )05 (y) dy < exy””.
D3 D3
It follows that

—-1/2

1/2
-1 — cle/ | log a:1|2 < p22(21,0) < —c3xy 1/2

+ C4$1/ |log z1 ]2

where x1 = /r — s. It is very important that c1, co, c3, ¢4 do not depend on s. Hence

there exists ro € (0,7/4], ro = ro(A) such that for any x; € (0,r2] we have poo(z1,0) ~

793171/2. O

Lemma 3.8. There exists ro € (0,709/4], 72 = r2(A) such that for any x1 € (0, r2] we have
(,011(%1, 0) —1}1_3/2.
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Proof. First we show that |p11(x1,0)] < c:vl_g/Q, x1 € (0,72]. We will use similar notation
as in Lemma 3.7. Put r = ry. Let r; be the constant from Corollary 3.3. We take
s€ (r—(r1/2)%r), 2= (r,0), B= B(z,s) and P is given by (19). For any 1 € (r — s,7]
by Lemma 3.5 we have ¢ (z1,0) = fD\B P((x1,0),y)p1(y) dy. Tt follows that

e11(21,0) = s Pi((21,0),y)p1(y) dy

=/ A((1,0),y)p1(y) dy + E((1,0),y)¢1(y) dy,
D\B D\B

where A, E are given by (20), (21).
Take 1 = /r — s (we have /7 —s <r;/2 <r/8). By (24) |p1(y)| < 0551/2(,1;), y € D.
We have

T — T

/ A(21,0),y)p1(y) dy = m P((21,0),y)e1(y) dy,
D\B S 1 —7T)" JD\B

= |1(21,0)] < cay/?

| P@0.9a0)d
D\B

and % ~z7! so
A((w1,0), 9)¢1(y) dy| < cay
D\B
for 1 = /1 — s.

Let fi, D1, D2, D3 be such as in the proof of Lemma 3.7. Using |1 (y)| < 061_)1/2(3;)

and similar arguments as in the proof of Lemma 3.7 we get the following estimates

[ Ben0.0)010) dy] (25)
1
x1 fi(y2)
< C$1_5/2/ dy2/ dyi (—y1 + fi(y2)) Y2 (1 — fly2)) V2 < 0901_3/2,
—z1 f(y2)
‘ i E((z1,0),y)¢1(y) dy (26)
2
ri/2 f1(y2)
< cnll? / dya 3" / dyr(—y1 + )2 — F) (@1 + )
z1 f(y2)
< cxfg/Z,

(here we used the estimate 31 < cy3). By Lemmas 2.3, 3.4 we obtain

| B((1,0),9)01() dy\ < cay”? A 552 ()8p P (y) dy < exy/.
3 3

It follows that |p11(z1,0)] < cx1_3/2, where ¢ does not depend on s and 1 = /r — s. Since
s € (r—(r1/2)%r) we get |p11(z1,0)| < cx1_3/2, z1 € (0,71/2].

Now we will show that ¢1;(x1,0) < —cxl_S/Q for 21 € (0,r2]. Here we will use notation
similar to the notation used in the proof of Lemma 3.1. We will use (18) for s = r, in
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particular B = B(z,7). By (18) we get for z; € (0, ]

w11(21,0) = hi1(21,0) + . Pri((21,0),y)e(y) dy
D\B

A E
«mm»wﬂwdyyéwam«mmxwﬂwdy

= hii(z1,0) +/

p\g 011
One easily gets hi1(z1,0) =~ —x;3/2 for x1 € (0,7/4]. For = € B, y € (B)° we have

04y = ZOPP e —eP) P e —r)? | —Cp(r? —Ja—2?) 1
Ouy (ly =P =) Pyl 7 (ly = 2P =) P — g2
~2Cp(r? — [z = ) 2(r — 1) (1 — 1)

(ly = = =) =y

AW (2, y) + AP (2,y) + AP (z,y),

ai(x ) = —2Cp(r? — |z — z|?) V2 (r — ) (z1 — 1) —20p(r? — |z — z|?)/?
on (ly = 2* = r*)! /2w — y|* (ly — 22 — 1212z — y[4
80}3(7"2 _ ’.’L‘ _ Z|2)1/2(x1 _ y1)2

(ly = = =) 2l — yI°
= EW(z,y)+ ED(z,y) + E®(2,y).

_|_

Let 21 € (0,7/8], y € (B)°. We have AW (z,y) < 0, A®(z,9) < 0. We also have
A®)(z,y) > 0iff y; > 1. Let f; be such as in the proof of Lemma 3.1. Let p} > 0 be
such that fi(p]) = 21, py < 0 be such that fi(ph) = 21 (we have p, = —p/). Note that
P} ~ Z1, [Ph| ~ /1. Note also that fi(r/2) = r(1—+/3/2) > r/8 and fi(p}) = z1 < r/8
so p} < r/2. Put

Dy = {(y,v2) : y2 € [P, Pi]s w1 € (f(y2), fr(y2))},
Dy {(y1,92) - yo € (01, 7/20 U [=r/2,p5), 11 € (f(y2), [1(y2))},
Dy = D\ (DjuDjUB).

We have fD,l AB)((21,0),9)¢(y) dy < 0. Note that for y € D), we have 31 < f1(y2) < cy3,
<

1/2 = ¢y, by Lemma 2.6. Hence

which gives ¢(y) < ¢dp)”(y) < ¢(y3)

_ r/2 fi(y2)
/D/ A® ((21,0),y)p(y)dy < cx; 1/2/ dya y2_4/f dy1 (y1 — fi(y2)) " Py1(y)

2 \/H (92)
_1yp [T? ~1/2
< cx / dys < cx; 7,

c\/T1

< cmfl/Q (5;31/2(y) dy < cxfl/Q.
Dy

A® ((21,0),y)p(y) dy
Dy

Note that EW(z,y) = A®) (z,y) and E®(z,y) < 0. To estimate fD\B E®)p we put

DY = {(y1,92): v2 € [~x1, 2],y € (f(y2), fi(y2))},
Dy = {(y1,v2): y2 € (w1,7/2)U[—1/2,—x1),y1 € (f(v2), f1(y2))},
Dy = D\ (D{uDjuB).
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Note that for y € D] we have (x1 — y1)? < 22, which gives ¢(y) < 0(51/2( ) < cxp by
Lemma 2.6. Hence

3) 7/ f1(y2) 12
[ B9 0. ety < e [ = ) e
1 —Z1
< c:cl_l/Q.
Note that for y € DY we have (z1 — y1)? < 2?2 + 92 < 22 + cy3 and ¢(y) < c51D/2(y) < cys
SO

E®((21,0),y)¢(y) dy
Dy

1/2 fi(y2) 1y
ey / dy2 yy ($1+y2)/f dy1 (1 — f1(y2))” " “e(y)

(y2)

r/2 r/2
cx‘;)/Q/ y2_4 dys + cxi/Q/ dys < cx;1/2.
x1

xr1

IN

IN

We also have ng E®)((x1,0),9)p(y) dy < cxy/”.

It follows that for sufficiently small 21 we have p11(z1,0) < —cmf?’/ 2, O

Lemma 3.9. There exists ro € (0,79/4], ro = r2(A) such that for any x1 € (0,r2] we have
[r2(21,0)] < exy * log .

Proof. We will use similar notation as in Lemma 3.7. Put » = ry. Let r; be the constant
from Corollary 3.3. We take s € (r — (r1/2)2,7). Recall that z = (r,0), B = B(z,s)

and P is given by (19). For any z; € (r — s,7] by Lemma 3.5 we have ¢y(z1,0) =
fD\B P((21,0),y)p2(y) dy. It follows that

p12(21,0) = s Pi((1,0),y)p2(y) dy

= A((z1,0), y)@z(y)der/D\BE((xl,O),y)w(y) dy.

D\B

Take z1 = \/r — s (we have \/r —s <r1/2 <r/8). We have

T — T

s A((21,0), y)p2(y) dy = Ry r——) /D\B P((z1,0),y)¢2(y) dy.

By Lemma 3.2 we get

= |p2(1,0)| < cx}?|log 1]

| Pl@0).)eatw) dy
D\B

Since (r — x1)(s% — (21 —7)?)~! ~ 27! we obtain

< c:vl_lﬂ\ log 21|,

[ 0.0 dy
D\B

for x1 = \/r — s.
Let fi, D1, Dy, D3 be such as in the proof of Lemma 3.7. By Lemma 2.2 we have for
y € DiUDs

p2(y) = cosaly) 24(y) ~ sina(y) 55 (1),
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By the arguments from the proof of Lemma 3.7 we have for y € Dy U Dy

cosa(y)({;(y)\ < ey — Fu) " log(y — F(u2))

< ey [logul,
. 0 -
sin a(y)ag(y)‘ < cya(yr — f(y2)) 12,

Similarly like in the proofs of Lemmas 3.7 and 3.8 we obtain the following estimates

B(1,0).9) cosaly) 22 (0 dy‘

7 71 f1(y2)
< cryg 5/2 dys /( : dyr(—y1 + f1(y2))_1/2yi/2!10gy1| < C$}/2|10g$1|-
—x1 f(y2

D,

Here we used the following facts y}/2| logy1| < cya|logys| < cxq|logzy], ffl(yQ)(—yl +

(y2)
_ 1/2
Fi(y2) 2 dyy < efiP(y2) < ey < e,
Using similar arguments we get

] A E<<x1,0>,y>cosa<y>§;i<y>dy‘

r/2 f1(y2)
< cw}/Q/ dyayy /( | dyr (=1 + f1(y2)) 291 log yn | (21 + 1)
z1 f(y2

< cw}/2|logac1|.

By the same arguments as in (25), (26) one can easily obtain

[ (1.0t — ) dy\ < 7",
1

| B((w1,0), )yl - Flya)) /2 dy' < ca;? 4 cay?|log ),
2

By Lemmas 2.3, 3.4 we obtain

E((21,0), )2 (y) dy\ <ery” | 55765 (y) dy < car)?.

D3 D3

It follows that |p12(x1,0)| < cxl_l/2| log 1|, where ¢ does not depend on s and x1 = /1 — s.
Since s € (1 — (r1/2)%,7) we get |p12(21,0)| < cwl_lm\ log z1|, z1 € (0,71/2]. O

By Lemmas 2.2, 3.7, 3.8, 3.9 and Corollary 3.3 we obtain

Corollary 3.10. There ezists ro € (0,70/4], 72 = r2(A) such that for any y € D, dp(y) <
ro we have (22), (23), (24) and

0? .
S~ =5,
0? _
8722@) ~ =0, (w),

0%
onoT

<y>\ < 552 (y)| log(6p ().



20 T. KULCZYCKI

Lemma 3.11. There exists rs € (0,r0/4], 3 = r3(A) such that for any y = (y1,y2) €
B((rs,0),73) we have

o) < ey logyi| + lyalyr /), (27)
)l < ey P logyi| + ly2lyy ), (28)
poa(y)] ~ —y (29)
and for any y = (y1,y2) € Wy, we have
o1(y) ~ 5, (), (30)

where Wy = {(y1,2) « y2 € [=r3, 73], 51 € (f(y2), 73]}
Proof. We may assume that yo > 0. Let r € (0, 73] where 7 is the constant from Corollary
3.10 (recall that ro < r¢/4). Let y = (y1,y2) € B((r,0),r) with yo > 0. By Lemma 2.2 we
have sin a(y) ~ y2, cos a(y) ~ c. We also have dp(y) ~ y1 and y3 < cy;.
—1/2 —-1/2 1/2

By Corollary 3.10 we get 52 (y) ~ ~8,*(y) ~ —y1 /%, | 22(y)| < ea ()| log(0p ()] <
cyi/ 2\ logy1|. Using this and the formula for 9 from Lemma 2.2 we get (27).

By Corollary 3.10 we have
0%

—=(y)
onoT
0% 0%
W(y) - ﬁ(y)

< 55" (y) | 1og(5p ()| < cyy | log i,

<5 (y) < ey

Using this and the formula for 15 from Lemma 2.2 we get (28).
By Corollary 310 we have 22(y) ~ 35" (y) ~ —y; %, 8(y) ~ —55"%(y) =

3/2 e
—y, 7 sin?a(y) & y3 < e,
. ¢ ~1/2
sina(y) cos a(y) —=(y)| < cyay; “|logyi| < c|logyi|.
onoT

Using this and the formula for p9s from Lemma 2.2 we get (29) for sufficiently small 7.
By (22), (23) and the formula for ¢; from Lemma 2.2 we get (30) for sufficiently small
T. g

We have (—A)Y2p(z) = 1 for € D. We need to estimate (—A)Y2p(x) for z € (D)°.
For such z we have (—A)Y2p(z) = —(27)7* [, W)y,

ly—z[3

Lemma 3.12. Let x = (—x1,0), 1 > 0. We have
—1/2 _
|(=2)"2p(@)| & 35 A (@)L + ).

Proof. Put r = rg. When z1 € (—o0, —r/2) we have

o(y) 3 c—1/2 _5/2
~dy~l|z|"° =~ z)(1+ |z .
/Dy—xP Y~ |zl D ()( |])

When z; € [-r/2,0) we obtain uisng Lemma 2.6

ply— = DNB(0,5p(x)) DA(BO,r/2)\B(0,5p(x)))

+/ \y|_5/2 dy%cSBl/Q(:U).
DABe(0,r/2)

By Lemma 3.12 we obtain immediately
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Corollary 3.13. For any x € (D) we have
(—8) ()|~ 85 (@) (1 + [2]) =

4. ESTIMATES OF DERIVATIVES OF u NEAR 9D x {0}

In this section we study the behaviour of u;; near 9D x {0}. The ultimate aim of these
estimates is to control determinants of Hessian matrices of the function « and the function
v(ED) (which is equal to u plus a small auxiliary harmonic function, for a precise definition
see Section 6) near 0D x {0}. The estimates are quite long and technical because u;; are
singular near 9D x {0} and their behaviour is quite complicated.

In the whole section we fix C; > 0, Ry > 0, ke > k1 > 0, D € F(C1,R1,k1,K2)
and zg € 0D. We put A = {C1,R1,K1,k1}. ¢ is the solution of (1-2) for D and u
is the harmonic extension of ¢ given by (6-10). Unless it is otherwise stated we fix
a 2-dimensional coordinate system CS,, and notation as in Lemma 2.2 (see Figure 1).
In particular x is (0,0) in C'Sy, coordinates. To study u we also use a 3-dimensional
Cartesian coordinate system 0xjxzoxs, see Figure 4, which is formed (roughly speaking)
by adding Oxs axis to the above 2-dimensional coordinate system. Let us recall that in
the whole section we use convention stated in Remark 2.9.

Put r =ri1 Ara Ars A f(ro/4) A f(—r9/4), where 1o, 71, T2, r3 are the constants from
Lemma 2.2, Corollary 3.3, Corollary 3.10 and Lemma 3.11. Note that f(ro/4)Af(—ro/4) >
037“8 /16, where c3 is a constant from Lemma 2.2, 037% /16 depends only on A. Let us define
fuir [=rr] = Rby fi(y2) =r—+/r? —yzand g1 : [0,7] = Rby gi1(y1) = /72 — (y1 —7)?
(the graphs of f1, g1 are parts of the circle {(y1,y2) : (y1—7)?+y3 = r?}). For any h € (0, 7]
we put (see Figure 4):

S1(h) = {(z1,z2,23): x1 = —h,z9 = 0,23 € (0, h/4]},
Sa(h) = {(z1,x2,23): x1 = —h,z9 = 0,23 € (h/4,h]}
U {(x1,x9,23) : ©1 € (—h,0],20 = 0,23 = h},
S3(h) = {(z1,x2,23): x1 € (0,h],x2 = 0,23 = h}
U {(z1,22,23) : 1 = h,x9 = 0,23 € (h/4,h]},
Sa(h) = {(x1,x2,23): ®1 = h,z0 = 0,23 € (0,h/4]}.

The main tool which we use in this section is the following formula

u(zr) = / K(z1 — y1, 22 — y2, 23)0(y1, Y2) dy1 dys.
D
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To obtain estimates of u;; we differentiate under the integral sign in the above formula.
The results concerning estimates of wu;; are divided into 6 propositions. In the proof of
Proposition 4.1 we use the formula

ugo(z /Kz 1 — Y1, T2 — Y2, 23)2(y1, y2) dy1 dya,

(for brevity we simply write uge = [, Kaop2), the estimates of gf, 39” from Corollary

3.3 and the estimate of |V¢| from Lemma 3.4. In this proof we use also the formula
©2(y1,y2) — p2(y1, —y2) = 2y2¢22(y1,§) and the estimate of w99 from Lemma 3.11. In the
proof of Proposition 4.2 (which is the easiest result of this section) we use formulas u;; =

Jp K11, u13 = [, K13 and the estimate p(z) < 05113/2(56). In the proof of Proposition
4.3 we use formulas u1; = [, Ki¢1, uis = [, K3p1, the estimate of ¢; from Lemma
3.11 and the estimate of |V¢| from Lemma 3.4. The proof of Proposition 4.4 is based on
a different idea than the proofs of previous propositions. Namely, we use the fact that
us(y1,y2,0) = —(—A)1/2cp(y1,y2), for (y1,y2) ¢ 0D. We use also formulas u;3 = fR2 Kius,
uz3 = [g» K3uz and the estimate of |(=A)Y2¢| from Corollary 3.13. In the proof of
Proposition 4.5 we use formulas w12 = [, Kio@, us = [ Koz, o(y1,y2) — ¢(y1, —y2) =
2y22(y1, &), the estimate of ¢(x) from Lemma 2.6 and the estimate of ¢o from Lemma
3.11. In the proof we use also the formula ¢(z; +h, z2) — p(—21 + h, 22) — (21 + h, —22) +
o(—21 + h, —22) = 4z120012(&1 + h, &) and the estimate of p12 from Lemma 3.11. The
most difficult result of this section is Proposition 4.6. In this proposition we study wuos
on Sy(h) using two different formulas: ugz = [g» Koug and ugs = [, Kazp. We use the
estimate of ](—A)1/2g0] from Corollary 3.13, estimates of g, ¢12, 22 from Lemma 3.11
and the estimate of p(x) from Lemma 2.6. In Lemma 4.7 we obtain results concerning
uiz(z1,22,0) for i = 1,2,3 and (z1,22) € D.

In this section we use only these geometric properties of a domain D, which are stated
in Lemmas 2.2, 2.3 (and additionally the fact that D is convex and D C B(0,1)). Let
us recall that all constants in Lemmas 2.2, 2.3 depend only on A. We use only these
inequalities of ¢, ¢;, ¢;; which are stated in Section 3 and in Lemma 2.6. The constants
in these inequalities depend only on A. Therefore all constants in estimates of u;; obtained
in Section 4 depend only on A.

Proposition 4.1. There exists ho € (0,7/8], ho = ho(A) such that for any h € (0, ho] we
have ugs(x) ~ —x3h~/2 for x € Sy(h) U So(h) U S3(h), uga(zx) =~ —h~/2 for x € Sy(h).

Proof. Let h € (0,7/8]. We have

ua(x / Ko(z1 — y1, —y2, 23)2(y1, y2) dy1 dyo. (31)

Put (see Figure 5)

Dy = {(y1,92) : y1 € [fi(h), h],y2 € [=g1(y1), 91(v1)]},

Dy = {(y1,92): v1 € (hyr],y2 € [=g1(y1), 91 (1)1},

Dy = {(y1,92) : y2 € [-h.hl,y1 € (f(y2), f1(R))},

Dy = {(y1,y2) s y2 € [-r/2,=hJ U [h,7/2], 51 € (f(y2), f1(y2))},

Ds = D\(D1UD2UD3UD4).

For i =1,2,3,4 we also put Diy = {(y1,y2) € Di : y2 > 0}, Di- = {(y1,92) € D; : 2 <
0}.

Note that fi(h) < h?/r < h/4.

We will estimate (31). The most important is fDluDg Ksyps. By Lemma 3.11 for y €

~1/2

D1y U Doy we have @a(y1,y2) — w2(y1, —y2) = 2y2022(y1,&) =~ —y2y; ', where { €
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(—y2,y2). It follows that

/ Ky (z1 — y1, —y2, 23)p2(y1, y2) dy1 dyo
D1UDo

Y2
= ca:?,/ (p2(y1,y2) — pa2(y1, —y2)) dy1 dy2
D1+UD2+ ((‘Tl - y1)2 + y% + x§)5/2
y2y—1/2
—Y2Y
~ Cifz/ dyy dyo.
D14UDoy ((:L'1 - yl)2 + y% + $§)5/2

We have

y2y71/2
— Y291

dyy dy
/131+ ((x1 —y1)? + y3 + a3)5/2

1 b B h h 3 91(y1) 2
~ h5/ dy1y11/2/ dyz(—y§)+/ dylyll/z/ dz—‘?.
Ji(h) 0 J1(h) h Ya

_ 1/2
We have f1(y2) = y3(r + (r2 —53)/2) "V and g1(y1) = 11" (2r —y1) /2, 50 c13 < fi(ye) <
coys and 032,&/2 < gi(y1) < C4y%/2 and constants ¢y, ¢, c3, ¢4 depend only on A. Hence
the last expression is comparable to —h=3/2 (with constants depending only on A).

23
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By similar arguments we have

y2y71/2
—Y3Y;
dyy dyo
/Dg+ ((x1 —91)? +y2+x 3)5/2

”n _ g1(y1) _ 1/2
/dy1/ dys Z/2y1 /dy1/ 3/291
Y1 2
B3/2.

%

It follows that fDlUD2 Kopo ~ —xgh™3/2,

Now we will estimate | pyup, K22. 1t is sufficient to estimate i) DasuDss K202 The
estimate fD3,uD4, Kops is the same. By Lemma 2.2 and Corollary 3.3 we get for y €
D3y U Dyy

_ 0, ¢
lp2(y)] = |cosa(y) af(y) sin a(y) aﬁ(y)
< 5 (y)| log S (y)| + cyadp* (y)
< e(f M) = y) V2 ) P log((F M (w) — w2) f )
+ ey (7 ) —y) AT () YA
It follows that
Ky (z1 — y1, —y2, 3)02(y1, y2) dy1 dyo
D34
Ji(h) = (y1)
< Ci;’ dyl/ dy2y2|e2(y1,y2)]
h 0 0
Ji(h) =)
< Chx;’/o dyl/o dya(f~ (1) — y2) 2 (F () /2
x| log((f " (1) — w2) f~(y1))]y2
f1(h) I )
+ C}%’ ; dyl/o dys (f 7 (1) — w2) V2 ) T 28

By substituting w = f~'(y1) — y2 and using y2 = £~ (y1) —w < F 7 (w1), £ ) =y
f1(h) < ch? this is bounded from above by

cr fi(h) f=Hy) B
}753 0 dyl/o dww'(f~1 (y1))*? | log(wf " (y1))|
f1(h) 1t y)
+ C}%’ dyl/ dww_l/Q(f_l(yl))3/2
0 0

< cxs|logh| + cxzh™L.

In the above estimate we used the inequality f~1(y;) < cyi/ 2

2.2, property 3, so the constant ¢ depends only on A.

. This follows from Lemma
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In the same way we get

Ky (z1 — y1, —y2, 23)p2(y1, y2) dy1 dyo
Dt

r/2 f1(y2) Y2
crs3 / dyo / dy1 == p2(y1,y2)|
h fy2) Y2

f1(r/2) f~t()
< cxg/ dy1/ dyoys (F " Hy1) — y2) Y2 (f )2
f(h) 91(y1)
x|log((f (1) — y2) f (1))

f1(r/2) F~ )
+ 6963/ dy / dyayy > (F ) — w2) V20 ) T2
F(h) 91(y1)

IN

Similarly like in the estimate |, Dy Koo using substitution w = f~1(y1) — y2 we obtain
that it is bounded from above by cxz3|log h|? + cx3h™!. By Lemma 3.4 we get

<crs [ 052 (y) dy.
Ds

Ko(x1 — y1, —y2, 3)p2(y1, y2) dy1 dya

Ds

By Lemma 2.3 this is bounded from above by cxs. We finally obtained f D1UDs Kopg ~

—x3h™3/2 and ‘ngUD4ud5 Kyps| < cxzh™!, where all constants depend only on A. It is
clear that one can choose hg = ho(A) such that for any h € (0, hg] we have ugs(z) =
Ipyo..op, Kapa = —w3h™3/2 for x € S1(h) U Sy(h) U S3(h).

Now we estimate uga(z) for z € Sy(h). Put A = B((h,0),h/2), Ay ={y€ A: y2 > 0},
A1y ={y € B((h,0),x3) : yo2 > 0}, Aoy = Ay \ A14. By similar arguments as above we
obtain fD\A Koy = —23h™3/2 and for y € A we get w2 (y1,y2) —p2(y1, —y2) = —ynylm ~
—yoh~ /2. Note that for z € Sy(h) we have z = (h,0, x3), where z3 € (0, h/4]. It follows

that

/ Ko(x1 — y1, —y2, x3)p2(y1, y2) dy1 dy2
A

= Ko(z1 — y1, —y2, x3)(w2(y1, y2) — @2(y1, —y2)) dy1 dy2

Ay
1/2 y%
~ —x3h” / dyy dy2
ArUAgy ((h—=y1)? 4 y3 + a3)>/?
_pl/2 s h/2
~ - / p3d,0—l'3h_1/2/ p—de% —h_1/2.
L3 0 3

([l
Proposition 4.2. There exists ho € (0,7/8], ho = ho(A) such that for any h € (0, hy] we
have |u1y ()| < cxzh™>/2, |usg(x)| < cxzh™5/2, |uiz(x)| < ch™3/2 for x € Sy(h) U Sa(h) U
Ss(h).

Proof. Let h € (0,7/8].
We have

ui(z) = / Ki1(z1 — y1, —y2, 3) (Y1, y2) dy1 dya,
D
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Put D; = DN B(0,h). By Lemma 2.6 for y € Dy we have p(y) < ch'/2, for y € D\ Dy
we have ¢(y) < c(dist(0,))"/2. Tt follows that

/ Kiip
D1

/ K
D\D;

Since uy1(z) + ug(x) + ugz(z) = 0 and by Lemma 4.1 ugs(z) ~ —a3h~3/2 for = €
S1(h) U Sy(h) U S3(h) we get |ugs(x)| < cwzh™/2,
Similarly we have

h2
hl/z/ dy = cxgh_5/2,
Dy

< cx3 %

oo 2
< 0333/ %plﬂpdp R cxgh_5/2.
h

uiz(z) = / Kiz(x1 — y1, —y2, 23) (Y1, y2) dyi dys,
D

/ Kizp
Dy

/ Kizp
D\D:

2

< ch” hl/z/ dy ~ ch™3/?,
Dy

h7

oo 3
< c/ p—7p1/2pdpmch_3/2.
h P

0

Proposition 4.3. There exists hg € (0,7/8], ho = ho(A) such that for any h € (0, ho] we
have uyz(x) = h=3/2 for x € Si(h), upi(x) = h=>/2, uss(x) = —h=3/2 for x € So(h).

Proof. Let h € (0,7/8].
We have

U13(37) = / Ks(x1 —y1, —y27$3)¢1(y17y2) dy1 dyo,
D

(1 —y1)* + 43 — 223
((z1 —31)? + 93 +23)5/2
Put D1 = {(y1,92) : y2 € (—r,7),y1 € (f(y2),7)}. By Lemma 3.11 we get ¢1(y) =~
651/2(y) for y € D;. We also have K3(x1 —y1, —y2,x3) > 0 for y € Dy and = € Sy(h). Let
B(y) be the acute angle between Oy and y; axis. Put D2 = {(y1,v2) : |yl € (h,7),5(y) €
[0,7/6)}. Clearly, Do C D;. For y € Dy we have ¢1(y) ~ 551/2(31) ~ |y|='/? and
Ks(z1 — y1, —y2,23) > cly|=3. It follows that

Ks3(x1 —y1, —y2,23) = Ck

K3p1 > / \y|_7/2 dy ~ h3/2,
Dy Dy

By Lemmas 3.4 and 2.3 we get

/ Ksp1
D\D;

Hence uy3(z) > ch~3/2 for x € Sy(h) and sufficiently small h. By Proposition 4.2 |uy3(z)| <
ch=3/2 so uys(x) ~ h=3/2.
We have

< c/ 551/2(3/) dy < c.
D\D;

uil(z) = / Ki(xz1 —y1, —y2, 23)01(y1, y2) dy1 dyo,
D

z3(y1 — x1)
((x1—y1)? +y3 +a3)%/2

Ki(z1 — y1, —y2,23) = 3Ck
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Y2

Y1

FIGURE 6

We have Ki(z1 — y1,—y2,23) > 0 for y € Dy and = € S3(h). For y € Dy and x € Sa(h)
we have Ki(z1 — y1, —y2,3) > chly|~*. Tt follows that

Kipp > ch/ |y|_9/2 dy =~ h3/2,

D1 Dy

By Lemmas 3.4 and 2.3 we get ’fD\Dl K1g01’ < ¢. Hence uyi(z) > ch™3/2 for z € Sa(h)

and sufficiently small k. By Proposition 4.2 |u11(x)| < ch™3/% so ui1(z) ~ h=3/2. Since
w11 () 4 ugo () 4+ uss(z) = 0 and by Proposition 4.1 ugs(z) ~ —h~'/? for € Sy(h) we
get usz(x) ~ —h~3/2, O

Proposition 4.4. There exists ho € (0,7/8], ho = ho(A) such that for any h € (0, ho] we
have |uy3(z)| < ch=3/% for z € Sy(h), uiz(x) = —h=3/2 for x € S3(h), uiz(z) < —cash=>/?
for z € Sy(h), uzs(x) =~ h=3/%, uyy(z) = —h=3/2 for x € Sy(h).

Proof. Let h € (0,7/8].
We have

uiz(z) = /2 Ki(z1 — y1, —y2, x3)us(y1, y2, 0) dy1 dys,
R

x3(y1 — 1)
((x1—y1)? + 3 +a3)5/?

Ki(x1 —y1,—y2,23) = 3Ck

For y € D we have us(y1,y2,0) = —1 and for y € (D)¢ by Corollary 3.13

us (1, 92,0) = —(—A)20(y) ~ (1 + [y] 25,2 (y).
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Put (see Figure 6)
A1 = {yEB(O,h) 1 < }

Ay = {ye B(0, )\B(O h):y1 <0, ly2| < |yil},
Az = {y€B(0,r)\B(0,h): y1 <0, y2| > |11},
Ay = {y:ypel-hhly € (O,f(y2)]},

As = {y:y2 € (h,r]U[=r,—h),y1 € (0, f(y2)]},

Ag = Dc\(A1UA2UA3UA4UA5).

Clearly Al, AQ, Ag, A4, A5, A6 C D°¢. We also put D1 = B((h, 0), h/2)
Let x € S3(h) U S4(h). We have
<ch™ [ 6\ (y)dy < e,

/ Kiusg
A1 Al

Kiug =~ —933/ |Z/\_9/2 dy ~ —x3h™/?,
A2 A2

r 0
/ Kius gch/ dyQ/ dyy |y |7V 2y5t < eh ™32,
As h/\/§ —Y2

For x € S3(h)US4(h) and y € Ay we estimate |y; — 1| < y1+h < ch, f(y2) < cy3. Hence

h f(y2)
/ K1U3 < C$3h_4/ dyz/ dy1 (—y1 + f(y2))_1/2 < C.%'gh_Q.
Ay —h 0

For x € S3(h) U Sy(h) and y € A5 we estimate |y1 — z1] < v1 +h < clya|, f(y2) < cy3.
Hence

T fy2)
< C$3/h dyz/o dyy (—y1 + f(y2)) "2y < cawsh™2.

/ K1U3
Ag

For x € S3(h) we have

/ Kius
Dy

Kiug
As

We also have

< cas / 1y =265 2 (y) dy < cas.
Ag

_ / K
Dy
For z € Sy(h) we have
y1—h

Kiug| =cx /
/Dl T oy (= P 4 )
For z € S3(h) U S4(h) we also have

< cx3h_4/ dy = xgh_Q.
Dy

dyl dyg =0.

K1U3

< cxg/ (y1 — h)? +y2) 2 dy < cash™>.
D\D; D\D;
It follows that for x € S3(h) U S4(h)

luiz(z)| = / Kius
]R2

(for = € S3(h) such estimate follows also from Proposition 4.2).
Now note that Kj(z1 — y1, —y2,z3) < 0 and us(y1,y2,0) > 0 for = € Sg(h) U Sy(h) and
y € A UAs. So fA1UA3 Kjug < 0. It follows that for x € S3(h) U S4(h) we have

< ch32, (32)

’U,13(1') = Kius < / Kiug < —C.%'3h_5/2 + 01.7}3}1_2.
R2 AsUALUA5UAgUD
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It is clear that one can choose sufficiently small hg = ho(A) such that for any h € (0, ho)
and x € S3(h) U S4(h) we have ui3(z) < —coxzh™%2. Using this and (32) we also obtain
ui3(z) =~ —h =32 for any h € (0, ho] and z € S3(h).

Now we will estimate uss(x) for = € Sy(h). We have

ugsz(x) = /2 K3(x1 — y1, —y2, 23)us(y1, y2, 0) dy1 dysz,
R

(z1 —y1)* + y3 — 223
(21 —31)? + 3 +23)5/2
For x € S4(h) and y € D¢ we have Ks(x1 — y1,—y2,23) > 0, uz(y1,92,0) =~ (1 +
]y\*5/2)551/2(y). For y € D we have ug(y1,y2,0) = —1. We have

/ Ksug
A1UA,

K3(x1 —y1,—y2,23) = Ck

c —1/2
< = o y) dy
h3 A UA, D ( )

h f(y2)
< 5[ e [ dn o ),

Ksus ~ / ly| "2 dy ~ b3,
Ao

r f(y2) _ —-1/2
< C/ dyg/ i (= + fly2) 7% 32,
h

V2 - Y3

/ K3us
A3UAs5

Kjus
Ag

/ K3U3
D\D;

The integral over D; we compute directly. Recall that Dy = B((h,0),h/2) and = =
(x1,m2,23) € S4(h) so xy = h, zo =0, z3 € (0,h/4]. We have

<c /A 2652 gy dy < e,
6

< c/ (1 — 1) +43) %2 dy < eh™ "
D\D,

(h — y1)2 + y% — 233%

K3(r1 — y1, —y2, ¥3)u3(y1, y2,0) dy1 dy2 = CK/ dy1 dys.
D Dy ((h=y1)? +y5 + 23)5/2
(33)
Let us introduce polar coordinates h — y; = pcosf, yo = psinf. Then (33) equals
hj2  p*?—2z2 o 9 .. h?/4  t—222
2nCx fo Wp dp. By substitution ¢t = p° this is equal to 7Cxg fo W dt.

By elementary calculations this is equal to %. Hence ‘ / Dy K3U3’ < c/h.

It follows that |uss(z)| < ch=3/2. Since for z € Sy(h) and y € (D)¢ we have K3(z; —
Y1, —Y2,z3) > 0 and us(y1,y2,0) > 0 we get

> ch™3/% — cht

uzz(z) = Kiug > / Kiug > Kiug — ‘/ Ksus
R?2 AsUD As D

It follows that uss(x) ~ h~3/2 for & € Sy(h) and sufficiently small h. Since u1y(z) +
uga () + usz(x) = 0 and by Proposition 4.1 ugs(z) ~ —h~Y/2 for x € Sy(h) we get
un(ac) ~ —h73/2. ]

Proposition 4.5. There exists ho € (0,7/8], ho = ho(A) such that for any h € (0, hy] we
have |uia(z)| < cxzh™3/2|log h| for x € Sy(h) U Sa(h) U S3(h), luia(z)| < ch='/?|logh| for
z € Sy(h), |uss(z)| < ch=Y?|logh| for x € Sy(h) U Sa(h) U S3(h).
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Proof. Let h € (0,7/8].
We have

uy2(x / Kia(z1 — y1, —y2, z3)e(y1, y2) dy1 dys, (34)

z3(z1 — y1)y2
(21 —y1)? + 5 +23)7/?
Let Dy, Do, D3, Dy, D5 and D;y, D;_ for i = 1,2, 3,4 be such as in the proof of Proposition
4.2. We have

( 91)212
Kip = —0903/ (e(y1,y2) — @(y1, —y2)) dy1 dyo.
/D1UD2 D14+UDay (w1 — 1) + y2 +x )7/2

For y € D1y U Dyy by Lemma 3.11 we get |o(y1,92) — @(y1, —v2)| = [2y292(y1,&)| <
Cyz(yzyf1/2 + yiﬂl log y1|), where £ € (—y2,y2). Hence

Kia(z1 — y1, —y2, 23) = —15Ck

|z1 — 1] /2 | 2 1/2
Ky ‘ < carg/ Yoy +y5y," "|logy1|) dy1 dyo
J,, 700 b T =) g = e i T losal

h
_ —1/2 1/2
< cxzh 6/ dyl/ dys 3y, + y3ur* og v )
0 0

h c1y;
4 —1/2 . _5 1/2
* C$3h/ dyl/h dya(y5 *y; / + Yy 591/ | log y11)
0

< cxsh™?|loghl.

Note that for y € Dy we have |x; — y1| < cy;. We obtain

|961 1] /2 | 2 1/2
K < cx / Yoy +y5y," " [log y1|) dy1 dy
/]32 W‘  Jow, G m @ F By Ty logn) dyndis

" u 3 —13/2 9 —11/2
< cx3 [ dy dy2(yoy, " sy, | logy|)
+ carg/ dyl/ dya (yy* +y2 yl/ |log y1])
Y1

< cxsh™?|loghl.

By Lemma 2.6 for y € D3UD, we have ¢(y) < 65}7/2(31) < cya. Note also that |x1—y1| < 2h
for y € D3 and |x1 —y1| < h 4 y; for y € Dy. We get

h fi(h)
/ K0 < Cl‘sh_5/ dy2/ dyrys < cxzh™,
D3

Clyz
K1290‘ <cw3/ dyz/ dyr(h+y1)yy° < cozh™ .

’ Dy+
The estimate of ‘fDr K12g0‘ is the same so UD4 Klggo’ < cx3h~!. Note that for y € D5
we have |x1 — y1]| < cy1 and p(y) < c. Hence

y1]y2|
KlQSO‘ < ng/ 575 Ay1 dy2 < cx3.
‘/1)5 C(O,CN'Q) (yl + y2)7/2
For z € S1(h) U Sa(h) U S3(h) we have
ug3(x / Kos(x1 — y1, —y2, 23) (Y1, y2) dy1 dys.

The proof of the estimate UD KQgQO‘ < ch_1/2| log h| is very similar to the proof of the
estimate UD Klggo‘ < cmgh_3/2\ log h| and it is omitted.
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We have
u19(r) = / Kia(z1 — y1, —y2,73)0(y1, y2) dy1 dyz.
D

Put A = B((h,0),h/2). By the same argument as above we obtain ’fD\A Klggo’ <
cxzh=3/2|log h|. We have

/ K29
A

By substitution z1 = y1 — h, 29 = ys this is equal to

(y1 — h)y2
yy2) dy1 d
CZU3/A ((yl _ h)Q _|_y% +$§)7/2¢(y1 y2) Y1 ayz

/ 2122
Cx3 ¥
Bo.h/2) (27 + 25 + 23)7/2

(21 + h, 2’2) le ng

)

z1229(21, 22)
cr3 dz1 dzy
/w (23 + 23 +a3)"/2

(35)
where g(z1,22) = @(z1 + h,z2) — (=21 + h, 22) — ¢(21 + h, —22) + @(—21 + h, —z2) and
W = {z € B(0,h/2) : z1 > 0,22 > 0}. Note that for = € W we have g(z1,22) =
4z120012(61 + h,&2), where & € (—z1,21), {2 € (—22,22). By Lemma 3.11 we have for
z € W and &, & as above

lp12(§1 + h, &2)| < Ch_l/Q\ log h| + czah ™32,

It follows that (35) is bounded from above by

oy [ O
S Jw (27 + 25 +23)7/2

dzl dZQ. (36)

Put Wy ={z: z1 € [0,23],22 € [0, 23]}, Wao = {2z € B(0,h/2)\ B(0,23) : 21 > 0, z2 > 0}.
We have W C W; U Wa. (36) is bounded from above by

/ 2222(h=/?|log h| + zoh=3/2)
CI3
Wi

7 le dZQ
T3

2.2(p-1/2|1 -3/2
N 61'3/ 21725 (h |log h| + z2h )dz1d22
Wa

(2 +23)7/?

< ch™Y?|loghl.
g

Proposition 4.6. There exists hy € (0,7/8], ho = ho(A) such that for any h € (0, hy] we
have |ugz(z)| < ch=%/*log h| for x € Sy(h).

Proof. Let h € (0,7/8]. Put p = (—r,0), recall that z = (r,0). We have

ugz(x) = . Ko(x1 — y1, —y2, x3)us(y1, y2, 0) dyi dyo
R

/ Kous + / Koug
B(0,r/4)NB(p,r) (DNB(0,r/4))\(B(p,r)UB(z,r))

+ / Kous + / Koug
(DenB(0,r/4))\(B(p,r)UB(z,r)) B(0,r/4)NB(z,r)

+ / Kouzs =141+ 1T+ 1V + V.
Be(0,r/4)

Note that us(y1,y2,0) = —(—A)l/an(yl,yg) for (y1,v2) € R?\ 0D.
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Put A = B(0,r/4) N B(p,r). Fory € A by Corollary 3.13 we get |(—A)Y2p(y)| <
6551/2(2/) < c‘y1|71/2- It follows that

?/2|y1\_1/2
<

f1 y2) 1/2 r/4 —f1(y2) 1/2
< ng/ dyg/ ly2|y1| +cx3/ dyz/ du Z/2|yl|
—r/4 h® h —r/2 y2

< cx3h™ 3,

We also have

h f1(y2) 5 r/2 f1(y2) s .
11| < cx3 / dyz / dyy yoh ™ + cx3 / dyz / dy1 yay; ° < cxzh ™.
0 0 h 0

F0r1y2€ (DN B(0,r/4)) \ (B(p,r) U B(z,r)) by Corollary 3.13 we get \(—A)l/%p(y)’ <
cop / (y) = (f(y2) — y1)_1/2. Hence
— Y2
I} < Cx?)/ dy2/ dy1 (f(y2) —y1) 2.
|11 o) y2) —y) el 7
For yy € (0,7/4) we have

f(y2) Ji(y2)+f(y2)
/ (f(y2) —y) P dys = / 224z < ey
—f1(y2) 0

It follows that

h 2 r/4 2
Y2 C$3
‘IH’ < czs3 ; h5 dyg -+ C.fg/h yg dys < h2 .

Clearly

/ —CT3Y2
BOr/9nB(zr) (h—y1)? + y3 + 23)%/?

Using Corollary 3.13 we get

Sply)~'/*
< _ <
V] < cxg/D dy + cx3 /Dc TEAPEE dy < cxs.

IV =

dyy dyz = 0.

It follows that for x € S4(h) we have

lugs(z)] < T+ T+ I+ 1V + V| < C}fi” (37)
On the other hand we have for x € Sy(h)
ugs(x / Kog(z1 — y1, —y2, 23) (Y1, y2) dy1 dyo.
Put W = B((h,0),h/2), Wy = {y € W : yo > 0}. For x € S4(h) one may show

‘ i) D\W K23g0‘ < ch~'/2|log h|. The proof of this inequality is omitted. It is very similar to

the proof of the estimate ‘fD\W Kw(p} < czgh_3/2| log h| see the proof of Proposition 4.5.
We have

1202 — 3(y; — h) — 3y2
Kosp = —c/ 2 Y20 (Y1, y2) dyr dys
/VV w ((yr — h)? +y3 + 23)7/2 ( )

1225 — 3(y1 — h) — 3y3
- ? - y T d d . 38
C/m ((y1 — h)2 +y2 + 22)7/2 y2((y1,y2) — (Y1, —y2)) dy1 dyz. (38)
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For y € Wi we have ¢(y1,y2) — ¢(y1, —y2) = 2y202(y1,&2) where & € (—y2,y2) and
©2(y1,&2) = @2(h,0) + (y1 — h, &) 0o Vo (£'), where £’ is a point between (h,0) and (y1,&2).
It follows that (38) equals

1223 — 3(y1 — h)? — 3y3
co(h, 0 3 29y2 dy, d

1203 ~ 31— 2~ 33, ,
- ¢ 2y5(y1 — h,&2) o Vpa(&') dyy dya = T+ 11
/W+ (g1 = h)? + 93 +23)7/? 2 ) o Vierll)

Put V= B(0,h/2), Vi = {z € V : 29 > 0}. By substitution z; = y; — h, 22 = y2 we
obtain

1222 — 322 — 322
I = —C<P2(h70)/ s ! 2225 dy1 dys
Vi (Z%+Z%+ 2)7/2 ?

12302 32 3z
= —cpa(h,0 3 1 2 22 dyy dys.

By symmetry of z1, z2 the above integral equals

1 / 1223 — 327 — 323
(22 4 25 4+ 23)7/2

(22 + 23) dyy dys.

2

Let us introduce polar coordinates z; = pcosf, zo = psinf. Then the above expression

h/2 12z3—3p?
WP

h?/4)=%/2. By Lemma 3.11 @o(h,0) < ch'/?|1logh|. Hence |I| < ch='/2|log h|.
Now we estimate II. For y € W, and &, £ as above we have

equals 7 [ 3dp. By elementary calculation this is equal to (37/16)h*(23 +

(y1 =, &) 0 Vo (&) = (11 — h)pr12(€) + Lapaa(€). (39)
For any w € W by Lemma 3.11 we get |@o12(w)| < ch™'/2[log hl, |@az(w)| < ch™1/2 s0 (39)
is bounded from above by c|y; — h|h=1/?|log h| + c|ly2|h~/2. Put By ((h, ) 3) ={y €
B((h,0),z3) : y2 > 0}. It follows that
o< 5 ly = (h,0)*h /2 log bl dy
23 JB1((h,0).a3)
+ c/ ly — (h,0)]2h=Y/2|log h| dy < ch™'/?|log h|| log ).
W+\B+((h70)’z3)
Hence for x € Sy(h) we have
fuzs ()] < / Kaso| + 1) + [T < ch~"2|log ] log 2. (40)
D\W

For any > 0 and z € S4(h) we get by (37) |ugsz(2)|® < c1 h 38, Using this and (40)
we get |ugz(z)| P < ccﬂ 5| log 23|h=3%=1/2| log h|. Putting 8 = 1/9 we obtain |ugg(z)| <
ch=3/4log h|%/10 < ch~ 3/4| log h|. O
Lemma 4.7. For any (z1,x2) € D we have ui3(r1,x2,0) = ugz(zr1,22,0) = 0 and
ugz(w1,2,0) > 0.

Proof. The equalities uj3(x1, x2,0) = ugz(x1,x2,0) = 0 for (z1,z2) € D follows easily from
(8). For (z1,x2) € int(D®) we have

1
U3($1,$2,0) = —(—A)l/QQO(.’IJ) = 271' /[; ‘ygp_( 32’3 dy > 0.

By Corollary 3.13 we have f(x1,22) = us(z1,72,0) € L'(R?). By the normal derivative
lemma ([15, Lemma 2.33]) we get uss(x1,x2,0) > 0 for (z1,z2) € D. O
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5. HARMONIC EXTENSION FOR A BALL
The aim of this section is to show the following result.

Proposition 5.1. Let ¢ be the solution of (1-2) for the ball B(0,1) C R? and u be the
harmonic extension of ¢ given by (6-10). We have

H(u)(z) >0, zeR*\{B%0,1) x {0}}. (41)

Let us recall that H(u)(x) is the determinant of the Hessian matrix of u in z. Recall
also that the solution of (1-2) for the ball B(0,1) is given by an explicit formula p(z) =
Cp(1—|z)'/?, Cp = 2/7r Hence for ac = (.%'1,.%'2, x3), where x3 > 0 the function u is given
by an explicit formula u(z fB 0.1) —y1, 2 — Y2, 3)(y1, y2) dy1 dy2. Applying this
it is easy to check numerlcally that (41) holds (e.g. using Mathematica). Unfortunately,
it seems very hard to prove formally (41) using directly the explicit formula for w.

Instead, to show (41) we use a ”trick”: we add an auxiliary function w to the function

u and we use Lewy’s Theorem 1.6. First, we briefly present the idea of the proof. We
define

OO (z) = (1 —bu(z) + bw(x), bel0,1],
where w is an appropriately chosen auxiliary function given by

w(x) = K (1,22, 73 + /3/2). (42)
Note that for any ¢ > 0 the set {(z1,z2,23) : Ksg(z1,22,23 + q¢) = 0,23 > —q} =
{(z1,72,23) : 22 + 23 = (2/3)(z3 + q)%,x3 > —q}. The function w is chosen so that
wsz(z) = 0 for x € IB(0,1) x {0} i.e. for x = (x1,x2,0) where 22 + 23 = 1. Such a choice
helps to control H(U®))(z) near dB(0,1) x {0}. One can directly check that ¥(1) =
satisfies H( (1))(33) >0 for z € R3 U B(0,1) x {0} (recall that R3 = {(z1,x2,73) : x5 >
0}). If ¥ = 4 does not satisfy H(¥©)(x) > 0 for z € R U B(0,1) x {0} one can
show that there exists b € [0, 1) for which H(¥®))(z) > 0 for 2 € R3 U B(0,1) x {0} and
such that there exists zo € R3 for which H (U®)(x) = 0. This gives contradiction with
Theorem 1.6. If ¥(0) = 4 does not satisfy H(¥(?)(z) > 0 for z € R? one can use Lemma
2.7 and again obtain contradiction. This finishes the presentation of the idea of the proof.

Lemma 5.2. Let w be given by (42) and v = u+ aw, a > 0. There exists My > 10 and
hi € (0,1/2] such that for any a > 0 we have

H(U)($)>0, T € AT UAs U A3 U Ay,

where
A {(z1,9,23) : ] + a3 € [(1— 1), (1 + h1)?), 23 € (0, ]},
Ay = {(:‘U LL‘2,$3) : :L'% —l—:l?% € [(1 + h1)2aM12]7$3 € (07 hl]}a
A3 = {(x17x27 ) : :L‘% —|—£17% < 1}7
Ay = {(x1,m9,23) € ]Ri cx? a3 > ME oor x3 > My}

Proof. First note that for any fixed x5 > 0 the function (x1, z2) — v(z1,x2, z3) is radial so
it is enough to show the assertion for x € (A3 UA3UA3UA4) N L, where L = {(x1, 22, x3) :
zy = 0,21 <0}, Put A, = A;NL,i=1,23,4 Forxz e A} U A, U A5 U A} we have
vi2(x) = vaz(x) = 0 and vea(z) < 0. Hence H (v)(z) = voao(x)f(a,x), where

f(a,a:) =

and it is enough to show f(a,z) <0 for x € A] U A5 U AL U A).
We will consider 4 cases: z € A}, z € A, x € A}, x € A).

Case 1. z € A].

u11 + awyr U3 + awis
u13 + awiz  u33 + awss

v11 V13
v13 V33

(43)
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Put qo = \/3/2 and zZ0 — (—1,0,0). Note that w33(2’0) = O, wll(z(]) = CKq0(12 -
35)(1+q5) "% ~ 9.185Ck (1+45) "/, wiz(20) = —Ci (1245 —3)(1+43)"/* = —15Cx (1+
@), Let us denote wiy(x) = p1(x), wiz(z) = pa(z). Tt is clear that for sufficiently

small h; and = € A| we have
9
\/ T0|p2($)’ > |p1(2)]. (44)

Let hy denote the minimum of constants hy from Propositions 4.1-4.6. For any h € (0, hg]
put

Ti(h) = {(=1+4h,0,z3): x3 € (0,h/4]},
To(h) = {(—=1+h,0,z3): 3 € (h/4, h]} U{(z1,0,h): 21 € [-1,-1+h)},

T3(h) = {(x1,0,h): x1 € [-\/2/3h —1,—1]},

Tu(h) = {(x1,0 ) s a1 €[=1—h,—/2/3h— 1)} U{(=1—h,0,23) : 23 € (0,h)}.

Note that the value —y/2/3h — 1 in the definition of T3(h), Tu(h) is chosen so that
w33(—+/2/3h — 1,0,h) = 0. Note also that ws3(z) > 0 for 2 € Ty(h) U Ta(h) U T3(h)
and wss(x) < 0 for = € Ty(h).

We will consider 4 subcases: x € Ty (h), © € To(h), x € T5(h), x € Ty(h).

Subcase 1la. x € T} (h).
By (43), Propositions 4.1, 4.4 and definition of w we have

—b1(2)h =32 + py(x)a —by(z)h 32 — py(x)a
fla,z) = _ -3/2 _ -3/2 -1/2 |
ba(z)h p2(z)a e(xz)a+ bi(x)h + bs(z)h
where 0 < B < bi(z) < By, 0 <bs(z) < By, 0 < B < bs(x) < B3, 0 < P| <pi(x) < Py,
0 < P) <pax) <Py, 0<e(x) < EM) < E(hy), lim,_,o+ E(h) = 0. More precisely,
estimates of by(z), ba(x) follow from estimates of uq1(x), uis(x) for Sy(h) in Proposition
4.4, estimates of bs(x) follow from uss(x) = —uq1(x) — uge(x) and estimates of wuii(z),
uge(x) for Sy(h) in Propositions 4.1, 4.4. Estimates of p;(x), p2(x) follow from formulas
of w11(20), wiz(20) and continuity of wiq(z), wig(x) near zy. Estimates of e(z) and
limj,_,g+ E(h) = 0 follow from equality wss(z9) = 0 and continuity of ws3(x) near zj.
Hence
fla,z) = —e(@)bi(2)ah™? — b (@)h™* — by (2)bs(x)h > + &(@)p1 ()a”
+by (2)p1 (2)ah™3/% + pi(x)bs(x)ah ™2 — b3(2)h ™3 — p2(x)a® — 2by(x)pa(x)ah /2.
Note that for sufficiently small h we have
p1(x)bs(z)ah™% < pi(z)by (x)ah™3/2.
For sufficiently small h, using this and (44) we get
(9/10)p3(x)a® + 0 (@)h™> > pi(x)a® +bF(2)h ™"
> 2by(x)p1(x)ah3/?
> by (z)py(z)ah ™% + bs(x)py (z)ah ™2,
For sufficiently small h we also have pi(z)e(z)a® < (1/10)p3(z)a®. It follows that for
sufficiently small h; > 0 and for all 0 < h < hy, a > 0, x € T1(h) we have f(a,z) < 0.

Subcase 1b. x € Ty(h).
By (43), Propositions 4.1, 4.2, 4.4 and definition of w we have

f(a x) _ b1($)h—3/2 +p1(x)a —bz(x)h_3/2 —pz(x)a
s —bg(x)hﬁS/Z _ pz(x)a €(x)a _ bl(x)h*3/2 + bg(x)hfl/Q )

where —B; < bl(l’) < Bl, 0 < Bé < bg(x) < BQ, 0 < Bé < bg(x) < Bg, 0 < P{ <
pi(z) < P, 0 < P) < pa(z) < P, 0 < e(x) < E(h) < E(hy), limy,_,o+ E(h) = 0.
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More precisely, estimates of by (x), ba(z) follow from estimates of uy;(x), uiz(x) for Sz(h)
in Propositions 4.2, 4.4 estimates of b3(z) follow from uss(z) = —uji(z) — uge(x) and
estimates of u11(z), uge(x) for S3(h) in Propositions 4.1, 4.2. Estimates of pi(x), p2(x),
¢(z) and limy,_,g+ E(h) = 0 follow by the same arguments as in Subcase la. Hence

Fla,2) = (@b (2)ah™¥2 — B(@)h~ + by (@)ba(2)h~2 + e(@)pr (2)a?
—by(x)p1(z)ah ™3 + p(z)bs(z)ah™ Y2 — b3(z)h 3 — pd(x)a® — 2ba(z)p2(x)ah /2
Let us first assume that by (x) > 0. Then for sufficiently small » we have
e(x)by(z)ah ™% < by(x)pa(z)ah™>/?,
p1(x)bs(x)ah ™% < by
bi(x)bs(z)h™2 < b3(
e(@)pi(z)a® <
which implies f(a,z) < 0.

Now let us assume that bi(x) < 0. By (44) for sufficiently small h we get
(9/10)p3(x)a” + b (x)h ™" > pi(x)a® + b (x)h ™2 = |2b1 (2)pa (w)ah ™7,
pi(z)e(z)a® < (1/10)p3(z)a?,
p1(2)bs(2)ah ™% < 2by(x)pa(z)ah /2,

which implies f(a,x) < 0.

It follows that for sufficiently small h; > 0 and for all 0 < h < hy, a > 0, x € Th(h) we
have f(a,x) < 0.

Subcase 1c. = € T3(h).

By (43), Propositions 4.1, 4.2, 4.3 and definition of w we have
by (z)h =32 + p1(z)a —by(z)h 32 — py(x)a
—by(x)h ™32 — po(x)a  e(x)a — by (z)h =3/ + bg(x)h~ V2 |
where 0 < Bi < bl({L') < By, - By < bg(&f) < By, 0 < Bé < b3(33) < B3, 0 < P{ <
pi(z) < P, 0 < P) < pa(z) < Po, 0 < e(z) < E(h) < E(hg), limy,_,o+ E(h) = 0.
More precisely, estimates of by (x), ba(z) follow from estimates of w1 (x), uig(z) for Sa(h)
in Propositions 4.2, 4.3 estimates of bs(x) follow from ugg(z) = —u11(z) — uge(x) and
estimates of wuji(x), uga(x) for Sy(h) in Propositions 4.1, 4.2, 4.3. Estimates of p;(x),

p2(x), e(z) and limy,_,o+ E(h) = 0 follow by the same arguments as in Subcase la.
For sufficiently small A we have

f(a7$) =

b3(z)h "% < by(x)h™3?)2, (45)
25125(@ < 2 (46)

2$
) o) +2e(e)) < AT ()

If e(x)a — by (z)h =32 4 bg(x)h~Y/? < 0 then clearly f(a,z) < 0. So we may assume
e(z)a — by(x)h=3/2 + bg(x)h~1/2 > 0 which implies (see (45))
e(x)a > by(z)h ™32 — by (2)h ™2 > (b (z)h /%) )2, (48)
e(x)a > e(z)a — by (z)h ™% + by(z)h Y2 > 0. (49)
By (46) and (48) we get
2|bo(z)| by(x)h=3/2 2By - Pla - pg(:v)a‘

—3/2 _
b2 ()| R by () 5 B e(x)a 5 5
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By (48), (49), (50), (47) we get

2
fla,z) < (pr(x)a+ by (2)h3/?)e(z)a — <p2(2x)a>

pi(x)a?
4
It follows that for sufficiently small h; > 0 and for all 0 < h < hy, a > 0, x € T3(h) we
have f(a,x) < 0.
Subcase 1d. z € Ty(h).
Note that for = (21,0, x3) € T4(h) we have wsz(z) < 0. We also have

< (pi(z)a+ 2e(z)a)e(z)a — < 0.

U33(33) = /B(O B K33(£U1 — Y1, T2 — y27$3)90(y17y2) dy; dys.

Recall that Kgg(xl —Y1,T2 — Y2, :Cg) = CKl‘g((ﬂil — y1)2 + ($2 - y2)2 +$§)_7/2(6$§ - 9(56‘1 —
y1)? — 9(z2 — y2)?). Hence to have Kz3(z1 — y1, —y2,23) < 0 for all (y1,%2) € B(0,1) and
z1 < —1 it is sufficient to have 623 — 9(x1 + 1)2 < 0. Note that for x = (21,0, z3) € Ty(h)
we have 0 < z3 < —/3/2(z1 + 1), 71 < —1. Tt follows that 623 — 9(z1 + 1)? < 0
and wusz(x) < 0. Hence uss(z) + awss(z) < 0. Note that wug(x) + awsa(x) < 0 so
u11(x) + awri (z) = —u2a(r) — awea(x) — uzz(x) — awss(z) > 0. This and (43) implies that
f(a,z) <0 for any a > 0 and = € Ty(h).

Case 2. z € A),.
This case follows from the same arguments as in subcase 1d.

Case 3. z € Af.
Note that ws3(x) > 0 for = € Aj. Put Ts = z3 + /3/2. We have
w1 () = CxTs(x? +72)"/2(122% — 372).

Note that
{($1,0,$3) : w11(x1,0,x3) =0,21 <0,23 > —\/3/2} = {(x1,0,$3) D3+ 3/2 = —2331}.
Put T} = {(xl,0,0) @€ [;—g,o} } T, = {(ml,0,0) € (-1, %)} We have A} =
Ty UTs. Note that wi1(—+v/3/(2v/2),0,0)) =0, wii(z) < 0 for x € Ty and wi1(z) > 0 for
z € Ty. Note also that for = = (x1,0,0) € A} we have u(z) = ¢(x1,0) = Cp(1 — 2)'/? so
un(x) < 0.

We will consider 2 subcases: © € Ty, x € Th.

Subcase 3a. x € T;.

Note that wi1(z) < 0, u11(z) < 0 so u1(z) + awii(x) < 0 for a > 0. It follows that
ugs(z)+awss(x) > 0 (because uzz+awsz = —(ui1+awii +uge+awsz)). Hence f(a,z) < 0.

Subcase 3b. x € T5.

For (y17y2) € B(07 1) and Yy = (y17y270) we have ’U,(y) = So(ylayz) = CB(l - y% -
y3)'/2. Therefore for z € Ty we obtain ui1(z) = p11(21,0) = —Cp(1 — 23)73/2, uzs(z) =
—11(71,0) — @a2(21,0) = Cp(1 — x%)_3/2(2 — z?). Hence

uss(z) < 2luii(z)]. (51)
For x € T, we also have —waa(z) — wii(x) = wsg(z) > 0 so

lwaa(z)| > [wii(z)]. (52)

Note that fOI' xr = (IL’l,IIIQ,J;S) = ([1;‘1,070) c T2 we haVe Z3 —_V 3/2 and Z3 - ( 3 2)

1]



38 T. KULCZYCKI

For z € Th we have

[wig(2)| _ || (1225 = 32%) _ | |, 5 2|y |
= — 9.2 9= — —_ - 3 > — >1,
|w22(:c)| T3 (31’1 + 31’3) T3 (‘5730 41 T3
z1
SO
lwi(@)| > waz(z)]. (53)

If a = 0 then by explicit formulas f(a,z) < 0. If @ > 0 and u11(z) + awii(x) < 0 then
U33(IE) + CLUJ33(33) = —(ull(a:) + awu(:c) + UQQ(.T) + awgg(x)) > (0 and ulg(:c) + awlg(a:) =

awiz(z) # 0 (see (53)) so f(a,z) < 0. So we may assume a > 0 and u;;(x) + awqq(z) > 0.
Again by (43) and (51), (53) we get

fla,x) <

uir(x) + awyq(x) alwaa(z)|
alwaa(z)| 2[ur1(#)| — awi1(x) — awsa(x)
Hence
fla,z) < =2fupi(@)® + 3luar (@)|wir(x)a — Juri(2)]|waz(z)|a
—wiy(z)a® + wir ()l wae(w)|a® — [waa(z)[*a®.

By (52) this is bounded from above by

—2Jun1 (2)[* + 2lur1 (2)| w11 (2)|a — why (z)a® + wir(@)|wa(z)|a® — jwa (@

- (VA (g - ) (M)

‘2(12

< 0.

Case 4. z € A).
Recall that T3 = x3 + 1/3/2 and put T = (z1,x2,T3). Recall also that w(z) = K(T).
We have

En(®) = Cx@s(af+a23+73) (1227 - 323 - 373),
Ki3(T) = Cgaxy(a? + a2 +72)7 721282 — 322 — 322),
Ks33(T) = CgTs(a?+ a2 +72)7 72622 — 927 — 922).
For any M > 10 put
Ti(M) = {(x1,0,23): T3 = M,x; <0,ZT3 > 3|z1]},

Tp(M) = {(21,0,23): T3 = M, a1 < 0,/3/2[a1| < g < 3|z},
Ty(M) = {(1,0,23): Ts = M, a1 <0, |a1| < Tg < /3/2[21[}
U{(x1,0,23) : 21 = —M,0 <ZT3 < M}.
We will consider 3 subcases: z € T1(M), x € To(M), x € T3(M).

Subcase 4a. x € T (M).
Put B = B(0,1) C R?. We have

uir(z) = / (K11(z1 — 1, —y2, 23) — K11(T)) (Y1, y2) dy1 dy2
B

+K11(37)/ ©(y1,y2) dy1 dysa,
B

CrT3(122% — 373) Ok (2 — —~
K (z) = Kx32( 9212 7/2963) < K23 (—92 7/2) < ff'
(z1 + T3) (zf +T3) T3

(54)

For (y1,y2) € B we also have
|K11 (21 — y1, —y2, 23) — K (@)] < (|ya] + [y2] + |23 — 73))[VE1(E)| < 4|VE11(§)],
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where £ is a point between (1 — y1, —y2,x3) and T = (z1,0,Z3). For such £ we have

VEL(©)] < . (55)
T3

By (54), (55) for sufficiently large M and all x € T} (M) we have u11(z) < 0. We also have
awy(z) = aK11(T) < 0 for a >0, x € T1(M). Hence u;1(x) + aw1(z) < 0 which implies
f(a,z) < 0. It follows that for sufficiently large M; > 10 and for all M > M;, a > 0,
x € T1(M) we have f(a,z) <0.

Subcase 4b. z € Ty(M).

First we need the following auxiliary lemma.

Lemma 5.3. Let f(y1,y3) = —6y7 — 3yiys + 24y1y3 — 3y3. For any y3 > 0 and y1 €
[y3/3, ys] we have f(y1,y3) > 4y3.

Proof. The proof is elementary. Fix y3 > 0 and put g(y1) = f(y1,y3). We have ¢'(y1) =
—18y? — 6y1y3 + 24y3, ¢'(y1) = 0 for y; = (—8/6)ys and y; = y3 so g is increasing for
y1 € [(—8/6)ys,ys]. We also have g(y3/3) = (40/9)y3 so for any y1 € [y3/3,y3] we have
9(y1) > 4y3. O

Put b= [5¢(y1,y2) dyr dyz. For x € To(M) we have

Kll(f)(a + b) =+ 811(ZL‘) Klg(f)(a + b) + 613(1‘)

MO =] K@) a+) +ensle) Kan@(atb) +emlo) |

where
eij(x) = /B(Kij(wl — Y1, —y2,23) — Ki(T))p(y1, y2) dyr dys
for (i,7) = (1,1) or (1,3) or (3,3). For (y1,y2) € B we have

[Kij (1 = y1, —ya, 23) = Kig(T)] < (Jya] + ly2| + [z — 7)) [VE; ()] < 4VKi;(€)],

where ¢ is a point between (z1—y1, —y2, ¥3) and T = (21, 0,73). We have |VK;;(€)| < cx3?,
S0
ch

leij(2)] < (56)

Jla2) =1 Ky@)(a+b) Kas(@)(a+ )
We have |K;;(Z)| < czz* so by (56) we obtain
|f(a,z) = fila,2)| < ca+b)bas”. (57)
On the other hand we have
[fia,2)] > (a+b)* (KT3(T) — Kii(T)K33(7))

Ki(z)(a+b) Ki3(Z)(a+0b) ‘ ‘

_ N\ 2
> (a+b)? (ng(fv) - (Kll(w);%g(m)> )
VN 2
- m+w<mmmﬁ—0“§”)>. (58)
We have
’Klg(f)’ — |f(222(33)| = %CK(|Z1‘2 +f§)77/2(—6|$1‘3 — 3’$1‘2T3 + 24‘1’1‘T§ — 3@%)

By Lemma 5.3 we obtain

Koo (T 1
B2 S Loy (o 72) 720 > eyt

| K13(T)| 2 Z 3
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Using this and (58) we obtain

| Kn@)])?

|fi(a,z)| > (a+ b)2 (|K13(CC)| 5 > > cla+ b)2x§8.

It follows that fi(a,z) < —c(a+b)%x3®. Using this and (57) we obtain that for sufficiently
large My > 10 and for all M > Mj, a > 0, x € To(M) we have f(a,z) < 0.

Subcase 4c. = € T3(M).
This subcase follows from the same arguments as in subcase 1d. O

proof of Proposition 5.1. On the contrary assume that there exists z = (21, 22, 23) € R?\
(B¢(0,1) x {0}) such that H(u)(z) < 0. By Lemma 2.7 we may assume that z; > 0. By
an explicit formula for ¢ and Lemma 4.7 we may assume that z; > 0. Define

O (z) = (1 = b)u(z) + bw(x), be[0,1],

where w is given by (42). By direct computation for any x = (x1,z2,73) € R3 with

x3 > —4/3/2 we have

27(x3 + /3/2) (a3 + 23 + 2(w3 + /3/2)?)
R = Feevav ol

Recall that ]Ri = {(x1,22,23) € R3: 23 > 0} and put Q = Ri\(Al UAsUAy), where Ay,
Ay, Ay are sets from Lemma 5.2. By this lemma we obtain that z € Q and H(¥®)(z) > 0
for all b € [0,1] and =z € 9Q. Note that ¥ = ¢ and ¥ = w, H(WO)(z) < 0,
H(@W)(z) > 0 for all z € Q. Clearly, all second partial derivatives of U(®) are uniformly
Lipschitz continuos on Q that is

Je Wb e [0,1) Yo,y € Qi j € {1,2,3} [T (2) — ¥ (@)| < clz —yl.

It follows that there exists by € [0,1) such that H(¥®0))(zy) = 0 for some z € Q and
H(w®))(z) >0 for all z € Q. This gives contradiction with Theorem 1.6. O

6. CONCAVITY OF ¢

In this section we prove the main result of this paper Theorem 1.1. This is done by
using the method of continuity, Lewy’s Theorem 1.6 and results from Sections 3, 4, 5.
For any € > 0 we define

1.2 $2
0O () = ulw) + <_2} Sy x§> Lz eR\ (D° x {0}), (59)

where u is the harmonic extension of ¢ given by (6-10) and ¢ is the solution of (1-2) for

an open bounded set D C R2. When D is not fixed we will sometimes write v(&?) instead
of v(®),

Lemma 6.1. Let C; > 0, Ry > 0, ke > k1 > 0, D € F(C1,Ry,k1,Kk2), ¢ be the
solution of (1-2) for D and u the harmonic extension of ¢ given by (6-10). For any
£ >0 let v be given by (59). For any (w1, z9,73) € RY we have H(v)) (21, z9, —13) =
H(v ) (zy, 29, x3).

The proof of this lemma is similar to the proof of Lemma 2.7 and it is omitted.

Proposition 6.2. Fiz C; >0, R; >0, kg > k1 > 0 and D € F(C1, R1,k1,k2). Denote
A ={C1, Ry, k1,k1}. Let o be the solution of (1-2) for D, u the harmonic extension of ¢
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3| M Uy (M)
UL(M)
Us(h) Us(h)
M e L T M
T
Us(M, h,n) D Us(M, h,n)
U(M)
Ui (M) — M

A cross section parallel to the 13 plane
FIGURE 7

and v®) given by (59). For M > 10, h € (0,1/2], n € (0,1/2] we define (see Figure 7)
U(M) = {zeR3: m1+x2 < M?% 23=M oras=—M}
U{z e R3: 22 + 22 = M? 23 € [-M, M]\ {0}},
Usy(h) = {xzeR®: (x1,29) € D,dp((z1,22)) < h,x3 € [~h, h]}
U{z € R3: (21,22) ¢ D,0p((x1,22)) < h,x3 € [~h, h]\ {0}},
Us(M,h,n) = {zeR3: (z1,22) ¢ D,0p((x1,12)) > h,z3 + 23 < M?,
x3 € [-n,n] \ {0}},
Uyh) = {zeR®: (x1,29) € D,dp((21,22)) < h, 3 = 0}.
Then we have
Jep = c1(A) € (0,1] IMy > 10 3hy = hy(A) € (0,1/2] VM > My Ve € (0, M 7]
I = (A, M,e) € (0,1/2] 3C = C(A, M,&) > 0 Yo € Uy (M) U Us(hy) U Us(M, hy,7)
H(v®)(z) > C.
We also have

3k = h(A) € (0,1/2] 3C = C(A) > 0 Ve € Us(h)  H(u)(z) > C. (60)

Proof. In the whole proof we use convention stated in Remark 2.9. We have H (v(®))(x) =
Wi (z) + Wa(z) + Ws(x), where

M) = o @) (v @ (@) - ol (@ (@),
Wa(z) = —v23 @) (v @0 (@) = v (@) (@) |
Wa(z) = of(@)f(e.2),

fle,m) = v @) (@) - (F (@)%

The proof consists of 3 parts.

Part 1. Estimates on U;(M).
We may assume in this part that xo =0, z3 > 0, 1 < 0.
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By formulas u;;(z) = fD Kij(z1—y1, x2—y2, 3)¢(y1, y2) dy1 dy2 and explicit formulas for
K;; (see Section 2), there exist M7 > 10 and ¢ such that for any M > M; and x € Uy (M)
we have |u11(z)] < cxsM =2, ugo(x) =~ —x3M >, |ugs(w)| < cosM >, |uiz(x)| < eM 4,
lugsg ()| < M=, |uga(z)| < cosM 6.

Let us fix arbitrary M > Mj.

Let x € U1 (M) (recall that we assume that zo = 0, z3 > 0, 21 < 0). We have

(Wi(z)] < casM (MM ™" + 23M °(x3M " + 2¢)) < casM " + ceM ', (61)
Wa(z)] < eMP((2sM ™5 +e)M > + M a3M %) < cazsM™ fccM™10.  (62)
Now we estimate Ws(x). We have

vé‘;) (z) = ugo(x) — e~ —cxsM > —¢. (63)

The most important is the estimate of f(e,z). To obtain this estimate we will consider 6
cases.

Case 1.1. 23 = M, |z1] < x3/3.

Put m(z) = Cx(z3 + 23)~7/2. We have

2 2 -7 r3\?2 2
uir(x) = Ki1(x) = m(x)rs (1227 — 3z3) < cM™ 'z | 12 <§) —3z3 |,
so upy(x) < —eM~*. We also have
2
uzs(z) = Ks3(z) = m(z)x3(623 — 923) > cM a3 <6:U§ -9 (@> > ,

so uzz(z) > cM~*. Therefore for any £ > 0 we have vﬁ) (r) < —eM—*, v:(,)? () > M,
Hence f(e,z) < —cM 8.

Case 1.2. x3 = M, |z1| € [x3/3,23/+/3/2].

By the arguments from Subcase 4b in the proof of Lemma 5.2 we have w1 (z)uss(z) —
(u13(z))? < —cM 8 for sufficiently large M. For any € > 0 we have

| f(e, @) — (urn(z)uss(x) — (ws(2))?)| < 26° + 2e|uny (2)| + eluss(2)].

For any ¢; € (0,1] and all ¢ € (0,¢; M ~7] this is bounded from above by cc; M. Tt
follows that for sufficiently small ¢; € (0, 1], for sufficiently large M and all € € (0,c1 M 7]
we have f(e,z) < —eM 5.

Case 1.3. 3 = M, |z1| € [x3/+/3/2, 23]

We have
73

upy (z) = K1 (z) = m(z)x3(122% — 323) ~ M~ "2 <123/2

3:U§> ~ M1
For y € D C B(0,1) we also have

Ks3(z1 — y1, —y2,23) < Cxas((z1 —y1)? + 3 + 23)7/2(623 — 9(z1 — 11)?)
= Ckas((x1—y1)* + 3 +25)77/2(625 — 92F + 1821y1 — 9yf) < M,

so usz(z) < eM~°. For sufficiently small ¢; € (0,1] and all € € (0,¢;M~7] we obtain
vﬁ)(x) ~ M4, v:(,,?(a:) < ¢cM~°. We also have ui3(x) ~ Kiz(z) = m(z)z;(1223 —
3z2) > eM~*. Tt follows that for sufficiently small c;, for sufficiently large M and all
e € (0,c;M~7] we have f(e,z) < —cM~8.

Case 1.4. x3 € [M/4,M], x1 = —M.

We have

upy (z) = K11 (z) = m(z)xs3 (1223 — 323),

so upy(x) > ecM~*. We also have

uss(x) ~ Ksz(x) = m(m)x3(6x§ —9z2%),
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so uzz(xz) < —cM~*. Therefore for sufficiently small ¢; € (0,1] and all € € (0,¢c; M ~7] we
have vﬁ)(x) >cM—* vé?( ) < —ecM~*. Hence f(e,7) < —cM~8.

Case 1.5. z3 € [1,M/4], x1 =—M.

We have

uiz(x) = Ki3(x) = m(x):rl(lQ:n% — 3:@),

so uiz(x) < —ecM~*. We also have

unn(z) = K1 (z) = m(ac)m(l?:r% — 3.%‘%),

uzs(x) ~ Ks3(x) = m(z)w3(623 — 927),

so up1(z) > eM >, ugz(x) < —eM~>. Therefore for sufficiently small ¢; € (0,1] and all
e € (0,c;M~"] we have vﬁ) () > M, vé‘? () < —cM~°. Hence f(e,2) < —cM 8.

Case 1.6. z3 € (0,1], z; = —M.

By similar arguments as in Case 1.5 we get uiz(r) < —eM ™4, |uji(z)] < eM 75,
luzz(z)| < ¢M 5. Therefore for sufficiently small ¢; € (0,1] and all € € (0,c1M~7] we
have |vﬁ)(:v)] < cM7?, ]vé?(xﬂ < ¢M~5. Hence for sufficiently small ¢; € (0,1], for
sufficiently large M and all € € (0,c1 M ~7] we have f(e,2) < —cM 5.

Finally in all 6 cases we get that for sufficiently small ¢; € (0, 1], for sufficiently large M
and all € € (0,1 M ~7] we have f(g,2) < —cM~8. By (63) we get W3(z) = Ué;) (x)f(e,x) >
cxsM 13 4 ceM~8. By (61), (62) we have |Wi(x) + Wa(z)| < cxzsM 1 + ceM 10, Recall
that H(v©®)(z) = Wy (z) + Wa(z) + Ws(x). It follows that there exists sufficiently small
¢y = d(A) € (0,1] and sufficiently large My > M; > 10 such that for any M > M, and
£€(0,¢,M~ and all z € Uy (M) we have H(v®))(z) > ceM 5.

Let us fix the above My and M > My in the rest of the proof of this proposition.

Part 2. Estimates on Uz(h).

We will use notation and results from Section 4 (Propositions 4.1-4.6). In particular
we choose a point on dD and choose a Cartesian coordinate system with origin at that
point in the same way as in Section 4 (see Figures 1, 4). Let h € (0, ho], where hy denotes
the minimum of constants hg from Propositions 4.1-4.6. By Lemma 6.1 we may assume
x3 > 0, by continuity we may assume zz > 0. It follows that it is enough to estimate
H(v®)(x) for € Sy(h) U Sy(h) U S3(h) U Sy(h). We will consider 2 cases. Assume that
e € (0,1].

Case 2.1. x € S1(h) U S2(h) U S3(h).

If x € S1(h)US3(h) we have (vgg)( ))? = u2;(z) > ch™3, vﬁ)(m)vé? () = ui1(z)usz(z)+
2euy1 () — euss(x) — 262, |2euy1 ()| < ceh™3/2, | — cusz(z)| < ceh™>/2.

If ui(x) < 0 or ugg(x) < 0 then wuiy(z)uss(z) < 0 (recall that uyi(x) 4+ uss(z) =
—uga(x) > 0). If ugi(xz) > 0 and uzz(x) > 0 then

wni (2)uzs () < (“11(1“) ) )2 _ <u222<w>>2 <ol

Hence f(e,z) = —(vi?(:ﬂ))Q + vﬁ)(x)vé?(:v) < —ch™3 for sufficiently small h and all
e €(0,1].

If z € Sy(h) we have uyi(z) ~ h=3/2, ugs(z) ~ —h~3/2. Hence for sufficiently small h
and all € € (0,1] we have Uﬁ) (z) ~ h=3/2, vé‘? (z) = —h~%/% and f(e,z) < —ch™3.

Hence for any x € Si(h) U Sa(h) U Sg( ) for sufficiently small h and all ¢ € (0,1]
we have f(e,2) < —ch™3. We have vég)( ) ~ —a3h™%2 —e. Tt follows that W3(z) =
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Ué? (x)f(e,x) > C$3h79/2 + ceh™3. We also have

Wi(z)] < cxsh™2|logh (h_3/2h_1/2|logh|+(25~|—a:3h_5/2)x3h_3/2|10gh|)

< cash™"?|logh|? + ceh™!|log h?,

(Wa(z)] < ch™Y?|loghl ((6 + 23h )Y 2 log h| 4+ h™3/223h73/2| log h[)

< cash™"?|logh|? + ceh ™| log h|%.

Hence there exists sufficiently small i} such that for all h € (0, k)] and € € (0,1] we have
H®))(z) > cash™? + ceh=3.

Case 2.2. x € S4(h).

For sufficiently small i and all € € [0,1] we have Wa(z) > ch™'/2h=3 = ch=14/4,

Wi(z)] < ch~Y2|loghl (h_3/2h_3/4|logh|+h_3/2h_1/2|logh|)
< ch "4 log h?,

Walz)| < ch~34loghl (h*3/2h*3/4|1oghy+h*1/2\1ogh|h*3/2)
< ch 24 log h%.

So there exists sufficiently small hY such that for all h € (0,h]] and e € [0,1] we have
H(w®)(x) > ch™14/4,
Since u = v(®) is continuous in a neighbourhood of any = € D x {0} we obtain (60).
Let us fix hy = b} A h{ in the rest of the proof of this proposition.

Part 3. Estimates on Us(M, hy,7).

Let us choose arbitrary point on 0D and choose a Cartesian coordinate system in the
same way as in Part 2. Note that it is enough to estimate H(v(®))(z) for x € U5(M, hy,n) =
{(x1,22,23) : 3 =0,21 € [-M, —h1],z3 € (0,n]} and sufficiently small n = n(A, M, ).

Let x € U3(M, h1,1/2). Note that dist(z, D) > hy. By formulas u;j(x) = [, Kyj(z1 —
Y1, T2 — Y2, 23)9(y1,y2) dy1 dy2 and explicit formulas for Kj; (see Section 2) we have
ui1(2)] < cxzhy®, [uga(2)| < cazhy’®, Jugs(w)] < exzhy®, luiz(z)] < chi?, |ugs(x)] < chi?,
[ut2(z)] < nghl_s. Note also that by our choice of coordinate system for any y = (y1,y2) €
D we have y; > 0. From now on let us assume additionally that =z = (z1,x2,23) €
U}(M, h1,1/2) is such that z3 < |z1|/+/6 (this condition implies 1222 < 2x2). For such
z = (z1,72,73) and any y = (y1,y2) € D we have 1223 — 3(x1 — y1)? — 3(22 — y2)? <
—(x1 —y1)? < —xf < —hi.

It follows that

. (21 — y1)(1223 — 3(x1 — y1)? — 3(z2 — y2)?)
sl = o e sl
Ch3
> —M;. (64)

The constant C will play an important role in the rest of the proof and this is the reason
why it is not as usual denoted by ¢. Clearly, C' depends only on A.

Let us recall that in Parts 1 and 2 of this proof we have fixed constants My, M > My,
hi. At the end of Part 1 we have chosen a constant ¢} € (0,1]. Let us choose a constant
c1 to be

1~
c1=c) A ZCh:f, (65)
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where C' is a constant from (64). In the rest of the proof let us fix this constant ¢; and
£ € (0,c1M~7]. The reason to define ¢; by (65) is so that 2e? < 2¢iM ' < LC2hf M~
which implies
le ~
23 < ch%?M*M, (66)
which will be crucial in the sequel.
Note that for sufficiently small n = n(A,M,e) and x € Us(M, h1,n) we have z3 <

|z1]/v/6 and

_ €

Uéaz)(x) = —e+4up(r) < —e+caghy 5 < —5
€

vﬁ)(x) = —e+tun(r) < —e+ cxghl_5 < —5

We have
H(v®)(x) = o7 ()03 ()0 (2) + 2013 (@)v3 ()03 (2)
2 2
(@) (o (@) 0@ (@)~ e @) (v @)
e ~21.6
(@) (o @) = Z5 (67)
@) (@) >0,

ol (@) (v (@) ’ < (cashi®)?(2e + cashi®), (68)
03 (2)0$5) (2)0l3 (@) < cashPhynY, (69)
013 ()03 (@) (@) < (e + cashy ®)?(2 + cazhy®). (70)

Note that the right hand sides of (68), (69), (70) are bounded by 2% + 23C(A, h1) (note
that h; depends only on A so C(A,h1) = C(A)). By (66) and (67) we have 2e3 <

2 2
—ivé‘;)(x) (v%)( )) . We also have z3C(A,hy) < —41)562)(:(}) <v§€3)(x)> for sufficiently
small n = n(A, M, ¢e) and « € U5(M, h1,n). For such n and = we have

L@ (&) > £ C°0
H(v)(2) > —5u3) (@) (v (@) = =

O
Lemma 6.3. Let ¢ be the solution of (1-2) for B(0,1), u the harmonic extension of ¢
and v©) given by (59). For M > 10, h € (0,1/2], n € (0,1/2] we define
U(M) = {zeR3: 2t +22<M? 23=M orxzz3=—M}
U{z € R3: 2% + 23 = M? 23 € [-M, M]\ {0}},
Us(h) = {xeR>: 2? +a23¢c[(1—h)?1),23€[-h,hl}
Uz e R?: 2% + 23 € [1,(1+h)?, 23 € [-h,h] \ {0}},
Us(M,h,n) = {z €R’: af+a3€[(1+h)* M?],af + a3 < M? 23 € [-n,7]\ {0}}.
Then we have
dep € (0,1) IMp > 10 3hy € (0,1/2]) VM > My 3n =n(M) € (0,1/2]
Ve € (0, M~ Vo € Uy (M) U Us(hy) UUs(M, hy,n)
Hw®)(z) > 0.
Remark 6.4. Tt is important here that 1 does not depend on €.
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FIGURE 8

Proof. Existence of ¢1, My, hy and the estimate H(v®))(z) > 0 for x € Uy (M) U Ua(hy)
(where M > My, € € (0,c¢; M ~7]) follow from the arguments from the proof of Proposition
6.2.

Let € € (0,1]. Fix M > My and let x € Us(M, h1,1/2). We may assume that xo = 0,
z3 > 0, 21 < 0. We have H(v®)(z) = véz)(x)f(s,x), where f(e,z) = vﬁ)(x)vé?(a:) —
(vgg) (7))2. We have ugz(z) < 0so vég) (z) = uga(2)—e < 0. We also have |u1q ()| < cwzh]®,
lusz(x)| < cashy® which gives

vﬁ) (:U)vz(,)? () = (u11(x) — €)(uss(x) + 2¢) < c:cghflo + C$3h;5.

Let us additionally assume that x3 is sufficiently small so that x5 < %. For such x by

the arguments from the proof of Proposition 6.2 we have |ui3(x)| > ch3 M7 so ]v%) (7)]? =
luiz(x)|? > ch$ M. Hence for sufficiently small n = (M) and x € U3(M, hq,7n) we have

f(e,x) < 0, which implies H(v®))(z) > 0. O

Proposition 6.5. Let ¢ be the solution of (1-2) for B(0,1), u the harmonic extension of
¢ and v given by (59). For M > 10 put

Qu={zcR>: 2? +23 < M* a3 [-M,M]}\ {z e R®: 23 4+ 23 € [1, M?], 23 = 0}.

Let ¢y and My be the constants from Lemma 6.3. Then we have
VM > My Ve € (0, M ™| Vo € Qp Hw®)(z) > 0.

Proof. On the contrary assume that there exists M; > My, €1 € (0, 01M1_7], z € Qyy, such
that H(v*1))(z) < 0. By Lemma 6.3 there exists hy € (0,1/2] and 11 = (M) € (0,1/2]
such that Ve € (0,c; M[ 7], Va € Uy (M) U Uy (hy) U Us(My, hy,mi) H(v®)(x) > 0.

Note that by v(?) = u and by Proposition 5.1 we have H(v(®)(z) > 0 for all z € Qyy,.
It follows that there exists €2 € (0,e1] and Z € Qpy, \ (U1 (M1) U Uz(hy) U Us (M, hi,m1))

such that H(v()(2) = 0 and H(v2))(z) > 0 for all x € Qyy,. This gives contradiction
with Theorem 1.6. O

As a direct conclusion of Propositions 6.2 and 6.5 we obtain
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Corollary 6.6. Fiz C; > 0, Ry > 0, ko > k1 > 0 and D € F(C1, Ry,k1,k2). Denote
A={C1,Ry,K1,K1}. Let go(D) be the solution of (1-2) for D, uP) the harmonic extension
of oP) given by (6-10) and v&P) given by (59). Then we have

Jder = c1(A) € (0,1] Feg = ca(A) > 0 My > 10 3hy = hi(A) € (0,1/2] VM > M,
Ve € (0,c;M~7] 3 = n(A, M,e) € (0,(1/2) Ae] ez = c3(A, M, e) > 0,
Vr e Q(M,D,e¢) Hw®P)(z) > ¢s,
Vz € Q(M,B(0,1)) H(wEBOD)) (2) > 3,
Vz e Qu(D)  HuP)(z)> e,
where (see Figure 8) Q(M,D,e) = Q1(M)U Q2(M,D,e)UQs(M,D,¢),
QM) = {zeR®: 2?4+ <M*23=M orazg=—M}
U{z € R?: 2% + 2% = M? 3 € [-M, M]\ {0}},

Q2(M,D,e) = {zeR>: (z1,22) € D,6p((x1,22)) < hi,x3 € [-n,7]},
Qs(M.D,e) = {xeR’: (21,22) € D af + a3 < M? 3 € [-n,7] \ {0}},
QM,D) = {zeR®: 2% +23 < M* a3 (—M,M)}\ (D¢ x {0}),
Qi(D) = {zeR>: (z1,22) € D,6p((x1,22)) < h,x3 = 0}.
proof of Theorem 1.1.
Step 1.

In this step we will use the notation from Corollary 6.6. We will show that for any
A = {C1, Ry1,k1,k2}, D € F(A) and = € R?\ (D x {0}) we have H(u(P))(z) > 0.

Fix A = {C1, Ry, k1, K2} where Cp > 0, Ry > 0, ko > k1 > 0 and fix Dy € F(A). Let
{D(t)}tep,1), D(0) = Do, D(1) = B(0,1) be the family of domains defined by (16). By
Lemma 2.4 there exists A" = {C}, R}, x}, L} where C] > 0, R} > 0, s > £} > 0 such
that Vt € [0,1] D(t) € F(A'). Put v(&t) = ¢(&P®),

We will use Corollary 6.6 applied to A’ = {C}, R|,x},k]}. Fix M > My > 10 and
e € (0,c;M~7). Let

T={te0,1]: HwEY)(z) >0 forall zeQM,D(t))}.

Let Q1 (M) ={z € R3: 23 + 23 < M2, 23 € (0,M)} and Q_(M) ={x € R®: 2 + 23 <
M? x5 € (—M,0)}. Let us make the following observation: H(v&))(x) > 0 for all
x € Q(M,D(t)) if and only if H(v®D)(z) > 0 for all z € Q, (M). Indeed, if the latest
inequality holds then H (v()(x) > 0 for all z € Q_ (M) by Lemma 6.1 and H (v®)(z) >
0 for all z € D(t) x {0} by Lewy’s theorem. It follows that

T={te[0,1]: Ho®Y)(z) >0 forall zeQy(M)}.

The reason to consider Q4 (M) instead of Q(M, D(t)) is that Q. (M) does not depend on
t. By Corollary 6.6 we have 1 € T so T is nonempty. We will show that T is both open
and closed (relatively in [0, 1]), which implies that 7" = [0, 1].

By Lemma 2.5 and standard arguments, v(&%)(z) — v&9)(z) for z € Q, (M), when
0,1] 5t — s.

Let us assume that {t,, : n =1,2,...} C T and t,, — to as n — co. Then H(v&))(z) >
0 for all z € Q, (M). By Corollary 6.6 H(v(®%))(z) does not vanish identically in Q (M).
By Lewy’s theorem H(v&%)(z) > 0 for all z € Q4 (M). Hence ty € T, which implies that
T is closed.

Now, on the contrary, assume that T is not open. Then there exists to € T and a
sequence {t,} such that [0,1] > ¢, — to asn — oo and t,, ¢ T for any n = 1,2,.... Hence
there exists a sequence of points z,, € Q (M) such that H(v®))(x,) < 0. After taking
a subsequence, if necessary, we may assume that x,, — x9 € Q4 (M) as n — oo. If 2 €
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(D(t0))¢ x {0} then for sufficiently large n we get z,, € Q2(M, D(ty),e) UQ3(M, D(t,),¢)
and we get a contradiction to Corollary 6.6. If g € Q4 (M) U Q1(M) U (D(to) x {0})
then by standard arguments H(v&))(z,) — H (&) (29) < 0 as n — co. If zg €
QL (M) U (D(tg) x {0}) then we get a contradiction with our assumption that tg € T If
xo € Q1 (M) we get a contradiction to Corollary 6.6. So T is open.

It follows that for any fixed M > My > 10 and ¢ € (0,¢; M ~7) we have H(v(&P0))(z) >
0 for all z € Q(M,Dy). By taking e — 0 we obtain that H(uP0))(z) > 0 for all
z € Q(M, Dy). By the estimates of H(u(P?)) on Q4(Dg) from Corollary 6.6 we obtain
that H(u(P0))(z) does not vanish near 9Dy x {0}. Hence Lewy’s theorem implies that
H(uP0))(z) > 0 for all € Q(M, Dy). Since M > My > 10 was arbitrary we get that
H(uPo)(z) > 0 for all z € R?\ (D§ x {0}).

Step 2.

By sign(Hess(u(y))) we denote a signature of the Hessian matrix of u(y). In this step
we will show that for arbitrary A = {Cy, Ry, k1,k1}, D € F(A) and y € R3\ (D¢ x {0})
we have sign(Hess(u(y))) = (1,2) and ¢ is strictly concave on D.

Fix A = {C1,Ry,k1,k1} where C; > 0, Ry > 0, ko > k1 > 0 and fix D € F(A). Let
¢ be the solution of (1-2) for D, u the harmonic extension of ¢. Let (z1,z2) € D, put
x = (71,22,0). Denote f(r) = u1(z)uga(r) —uiy(x). By Lemma 4.7 uiz(x) = ugz(z) = 0,
ugz(x) > 0. By Step 1 H(u)(z) > 0. Hence f(z) > 0. We have uii(x) + ug(x) +uss(x) =
0 so u11(z) + uga(z) < 0. This and f(z) > 0 implies that uj1(z) < 0, uge(z) < 0.
Hence sign(Hess(u(x))) = (1,2). Since H(u)(y) > 0 for any y € R?\ (D¢ x {0}) we get
sign(Hess(u(y))) = (1, 2).

Inequalities f(x) > 0, uii(z) < 0, uge(z) < 0 give that ¢(z1,x2) = u(z1,x2,0) is strictly
concave on D.

Step 3.

In this step we will show that for any open bounded convex set D C R? ¢ is concave
on D.

Fix an open bounded convex set D C B(0,1) ¢ R2. It is well known (see e.g. [9,
page 451]) that there exists a sequence of sets D,, such that D,, € F(A,,) for some A, =
{Cin, Rin, K1, kon} and Up"y Dy = D, Dy, C Dyy1, n € N, d(D,,, D) — 0 as n — o0
(where C1,, >0, Ry, >0, Koy > K1,n > 0). Let 0™ » denote solutions of (1-2) for D,
and D. By Step 2 ¢(™ are concave on D,,. By Lemma 2.5 we have lim,, o, ¢ () = ¢(x)
for x € D. So ¢ is concave on D.

By scaling we may relax the assumption D C B(0,1). O

7. EXTENSIONS AND CONJECTURES

proof of Theorem 1.5. a) It is well known that if ¢, (z) = ¢(rx), for some r > 0 and all
z € R? then (—A)24¢,(z) = r*(=A)*?*Y(rz) (see e.g. [4, page 9]). Fix zg € dD and
A€ (0,1). Put f(z) = oAz + (1 — N)xg) — A\*p(z). We have (—A)*/2f(x) =0 for z € D
and f(z) > 0 for z € D°. Hence f(z) >0 for z € D.

b) Fix x,y € D and X\ € (0,1). Put z = Az + (1 — \)y. Let [ be the line which contains
x and y. Let zg € 9D be the point on [ which is closer to x than to y and yg € 0D be the
point on [ which is closer to y than to x. We have

Z:y\z—xo\ . <1_ \z—wo\)
ly — 2o ly — 2o

By a) we get

p(z) 2 ('Z — x0|>a¢(y) > (‘Z — x’>a<p(y) = (1= N)%(y).

ly — o] ly — x|
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szl (e
|z — yol |z — yol
Again by a) we get

p(2) > (’Z — y0|>aso(w) > ('Z - y’>a<p(x) = \%p().

| = ol |z —y|

We also have

Now we present some conjectures concerning solutions of (3-4).

Conjecture 7.1. Let « = 1, d > 3. If D C R? is an arbitrary bounded convex set then
the solution of (3-4) is concave on D.

It seems that using the generalization of H. Lewy’s result obtained by S. Gleason and
T. Wolff [20, Theorem 1] one can show this conjecture. Let o = 1, d > 3 and D C RY be
a sufficiently smooth bounded convex set such that 0D has a strictly positive curvature,
¢ the solution of (3-4) and wu its harmonic extension in R*!'. Tt seems that using the
method of continuity, in the similar way as in this paper, one can show that the Hessian
matrix of u has a constant signature (1,d—1). This implies concavity of ¢ on D. Anyway,
Conjecture 7.1 remains an open challenging problem.

Conjecture 7.2. Let d > 2, D C R? be an arbitrary bounded convex set and ¢ be the
solution of (3-4).

a) If o € (1,2) then ¢ is 1/a-concave on D.

b) If o € (0,1) then ¢ is concave on D.

Remark 7.3. For any o € (1,2), 7 € (0,1 —1/a) and d > 2 there exists a bounded convex
set D C R? (a sufficiently narrow bounded cone) such that the solution of (3-4) is not
1/a + n concave on D.

Justification of Remarks 1.4 and 7.8. It is clear that it is sufficient to show Remark 7.3.
For any 0 € (0,7/2), d > 2 let

D(0) ={(z1,...,2q) : \/m < zptan,|z| < 1}.

Let o € (0,2) and ¢ be the solution of (3-4) for D(0).
By [29, Theorem 3.13, Lemma 3.7] for any ¢ > 0 there exists § € (0,7/2) and ¢ > 0
such that
o(x) < clz|*F, x € D(6). (71)
Theorem 3.13 and Lemma 3.7 in [29] are formulated only for d > 3 but small modifications
of proofs in [29] give these results also for d = 2. (71) for any d > 2 also follows from the
recent paper [7].

Fix d > 2, ae(1,2),n€ (0,1 -1/a) and € € (0’ 1‘j‘r27;7a), There exists 0 € (0,7/2)

and ¢ > 0 such that the solution ¢ of (3-4) for D(0) satisfies p(z) < c|z|*"¢. Fix zy =
(a,0,...,0) € D(0). If ¢ is 1/a + n concave on D() then for any A € (0,1) we have

a2n

o(Azo) > AT p(z0) = A* e (z0).
On the other hand p(Axg) < cAY ¢ |xg|* ¢, so

o2
c)\a—a|x0‘a—a > A\*T 1+nna 90(300)7
which gives
a2
)\1+an > gp(xg)cfl|xo|€7a

for any A € (0,1), contradiction. O
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We finish this section with an open problem concerning p-concavity of the first eigen-
function for the fractional Laplacian with Dirichlet boundary condition.

Let a« € (0,2),d>1, D C R be a bounded open set and let us consider the following
Dirichlet eigenvalue problem for (—A)®/2

(=A)*pn(x) = Mnpn(z), w€D, (72)
on(xz) = 0, x € D°. (73)

It is well known (see e.g. [13], [27]) that there exists a sequence of eigenvalues 0 < \; <
A2 < A3 <..., A\, — oo and corresponding eigenfunctions ¢, € L?(D). {¢,}5%; form an
orthonormal basis in L?(D), all ¢, are continuous and bounded on D, one may assume
that o1 > 0 on D.

Open problem. For any a € (0,2), d > 2 find p = p(d,«) € [—00,1] such that for
arbitrary open bounded convex set D C R? the first eigenfunction of (72-73) is p-concave
on D. It is not clear whether such p = p(d, o) € [—o0, 1] exists.

Any results, even numerical, concerning this problem would be very interesting.
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