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Abstract. We analyze jump processes Z with “inert drift” determined by a
“memory” process S. The state space of (Z, S) is the Cartesian product of the
unit circle and the real line. We prove that the stationary distribution of (Z, S)
is the product of the uniform probability measure and a Gaussian distribution.

1. Introduction

We are going to find stationary distributions for jump processes with inert drift.
We will first review various sources of inspiration for this project, related models
and results. Then we will discuss some technical aspects of the paper that may have
independent interest.

This paper is concerned with the following system of stochastic differential equa-
tions ( the precise statement is in the next section),

dYt = dXt +W ′(Yt)St dt,(1.1)

dSt = W ′′(Yt) dt,(1.2)

where X is a stable Lévy process and W is a C5 function. This equation is similar to
equation [1, (4.1)], driven by Brownian motion, but in (1.1) the term 1

2
(A∇V )(Xt) dt

from the first line of [1, (4.1)] is missing. An explanation for this can be found in
heuristic calculations in [8, Example 3.7]. The paper [8] deals with Markov processes
with finite state spaces and (continuous-space) inert drifts. This class of processes
is relatively easy to analyze from the technical point of view. It can be used to
generate conjectures, for example, [8, Example 3.7] contains a conjecture about the
process defined by (1.1)-(1.2).

The main result of this paper, i.e. Theorem 2.12, is concerned with the stationary
distribution of a transformation of (Y, S). In order to obtain non-trivial results, we
“wrap” Y on the unit circle, so that the state space for the transformed process
Y is compact. In other words, we consider (Zt, St) = (eiYt , St). The stationary
distribution for (Zt, St) is the product of the uniform distribution on the circle and
the normal distribution.

The product form of the stationary distribution for a two-component Markov
process is obvious if the two components are independent Markov processes. The
product form is far from obvious if the components are not independent but it does
appear in a number of contexts, from queuing theory to mathematical physics. The
paper [8] was an attempt to understand this phenomenon for a class of models.
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One expects to encounter a Gaussian distribution as (a part of) the station-
ary distribution in some well understood situations. First, Gaussian distributions
arise in the context of the Central Limit Theorem (CLT) and continuous limits
of CLT-based models. Another class of examples of processes with Gaussian sta-
tionary measures comes from mathematical physics. The Gibbs measure is given
by c1 exp(−c2

∑
i,j(xi − xj)

2) in some models, such as the Gaussian free field, see

[17]. In such models, the Gaussian nature of the stationary measure arises because
the strength of the potential between two elements of the system is proportional to
their “distance” (as in Hooke’s law for springs) and, therefore, the potential energy
is proportional to the square of the distance between two elements. Our model
is different in that the square in the exponential function represents the “kinetic
energy” (square of the drift magnitude) and not potential energy of a force. The
unexpected appearance of the Gaussian distribution in some stationary measures
was noticed in [7] before it was explored more deeply in [8, 1].

The present article has a companion [6] in which we analyze a related jump process
with “memory”. In that model, the memory process affects the rate of jumps but it
does not add a drift to the jump process. The stationary distribution for that model
is also the product of uniform probability measure and a Gaussian distribution.

An ongoing research project of one of the authors is concerned with Markov
processes with inert drift when the noise (represented by X in (1.1)) goes to 0.
In other words, one can regard the process (Y, S) as a trajectory of a dynamical
system perturbed by a small noise. No matter how small the noise is, the second
component of the stationary measure will always be Gaussian. Although we do
not study small noise asymptotics in this paper, it is clear from our results that
the Gaussian character of the stationary distribution for the perturbed dynamical
system does not depend on the Gaussian character of the noise—it holds for the
stable noise.

Models of Markov processes with inert drift can represent the motion of an inert
particle in a potential, with small noise perturbing the motion. Although such
models are related to the Langevin equation (see [13]), they are different. There are
several recent papers devoted to similar models, see, e.g., [2, 3, 4, 5].

We turn to the technical aspects of the paper. The biggest effort is directed at
determining a core of the generator of the process. This is done by showing that
the semigroup Tt of the process (Yt, St) preserves C2

b , see Theorem 3.1. The main
idea is based on an estimate of the smoothness of the stochastic flow of solutions to
(1.1)-(1.2). This result, proved in greater generality than that needed for our main
results, is presented in Section 3, see Proposition 3.3. This proposition actually
makes an assertion on the pathwise smoothness of the flow. It seems that Theorem
3.1 and Proposition 3.3 are of independent interest.

1.1. Notation. Since the paper uses a large amount of notation, we collect most
frequently used symbols in the table below, for easy reference.
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a ∨ b, a ∧ b max(a, b), min(a, b);

a+, a− max(a, 0), −min(a, 0);

|x|`1
m∑
j=1

|xj | where x = (x1, . . . , xm) ∈ Rm;

ek the k-th unit base vector in the usual orthonormal basis for Rn;

Aα αΓ

(
1 + α

2

)
2α−1

√
π Γ
(
1− α

2

) , α ∈ (0, 2);

Dα ∂|α|

∂xα1
1 · · · ∂x

αd

d

, α = (α1, . . . , αd) ∈ Nd0;

Ck k-times continuously differentiable functions;

Ckb , Ckc , Ck0 functions in Ck which, together with all their derivatives up to
order k, are “bounded”, are “compactly supported”, and “vanish
at infinity”, respectively;

‖f‖∞,B sup
x∈B
|f(x)| for f : Rn → R;

‖D(j)f‖∞,B
∑
|α|=j

‖Dαf‖∞,B ;

‖f‖(j),B , ‖f‖(j)
∑
|α|≤j

sup
x∈B
|Dαf(x)|, resp.

∑
|α|≤j

‖Dαf‖∞;

‖D(j)V ‖∞,B , ‖D(j)V ‖∞
∑
|α|=j

n∑
k=1

sup
x∈B
|DαVk(x)|, resp.,

∑
|α|=j

n∑
k=1

||DαVk||∞ for any function

V : Rn → Rn;

‖V ‖(j),B , ‖V ‖(j)
j∑
i=0

‖D(i)V ‖∞,B , resp.,

j∑
i=0

‖D(i)V ‖∞;

S {z ∈ C : |z| = 1} unit circle in C.

Constants c without sub- or superscript are generic and may change their value from
line to line.

2. A jump process with a smooth drift

Let S = {z ∈ C : |z| = 1} be the unit circle in C. Consider a C5 function
V : S → R which is not identically constant and put W (x) = V (eix), x ∈ R.
Let Xt be a symmetric α-stable Lévy process on R which has the jump density
Aα |x− y|−1−α, α ∈ (0, 2). Let (Y, S) be a Markov process with the state space R2

satisfying the following SDE,

(2.1)

{
dYt = dXt +W ′(Yt)St dt,

dSt = W ′′(Yt) dt.
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Lemma 2.1. The SDE (2.1) has a unique strong solution which is a strong Markov
process with càdlàg paths.

Proof. For every n ∈ N define the function fn : R → R by fn(s) := (−n) ∨ s ∧ n.
We consider for fixed n ∈ N the following SDE

(2.2)

{
dY

(n)
t = dXt +W ′(Y

(n)
t )fn(S

(n)
t ) dt,

dS
(n)
t = W ′′(Y

(n)
t ) dt.

Note that R2 3 (y, s) 7→ W ′(y)fn(s) is a Lipschitz function. By [14, Theorem V.7]
and [14, Theorems V.31, V.32] the SDE (2.2) has a unique strong solution which
has the strong Markov property and càdlàg paths for every fixed n ∈ N.

Now fix t0 <∞ and a starting point R2 3 (y, s) = (Y
(n)
0 , S

(n)
0 ). Note that for any

t ≤ t0 we have ∣∣∣S(n)
t

∣∣∣ =

∣∣∣∣S(n)
0 +

∫ t

0

W ′′(Y (n)
s ) ds

∣∣∣∣ ≤ |s|+ t0‖W ′′‖∞.

Pick n > |s| + t0‖W ′′‖∞, n ∈ N. For such n and any t ≤ t0, the process (Yt, St) :=

(Y
(n)
t , S

(n)
t ) is a solution to (2.1) with starting point (y, s). This shows that for any

fixed starting point (y, s) = (Y0, S0) and fixed t0 < ∞ the SDE (2.1) has a unique
strong solution up to time t0. The solution is strong Markov and has càdlàg paths.
Since t0 <∞ and the starting point (y, s) are arbitrary, the lemma follows. �

We will now introduce some notation. Let N be the positive integers and N0 =
N ∪ {0}. For any f : S→ R we set

f̃(x) := f(eix), x ∈ R.
We say that f : S → R is differentiable at z = eix, x ∈ R, if and only if f̃ is
differentiable at x and we put

f ′(z) := (f̃)′(x), where z = eix, x ∈ R.
Analogously, we say that f : S → R is n times differentiable at z = eix, x ∈ R, if
and only if f̃ is n times differentiable at x and we write

f (n)(z) = (f̃)(n)(x), where z = eix, x ∈ R.
In a similar way we define for f : S×R→ R

(2.3) f̃(y, s) = f(eiy, s), y, s ∈ R.
We say that Dαf(z, s), z = eiy, y, s ∈ R, α ∈ N2

0, exists if and only if Dαf̃(y, s)
exists and we set

Dαf(z, s) = Dαf̃(y, s), where z = eiy, y, s ∈ R.
When writing C2(S), C2

c (S × R), etc., we are referring to the derivatives defined
above.

Let

Zt = eiYt .(2.4)

Then (Z, S) is “a symmetric α-stable process with inert drift wrapped on the unit
circle”. In general, a function of a (strong) Markov process is not any longer a
Markov process. We will show that the “wrapped” process (Zt, St) = (eiYt , St) is a
strong Markov process because the function W (x) = V (eix) is periodic.
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Lemma 2.2. Let (Yt, St) be the solution of the SDE (2.1). Then

P(y+2π,s)(Yt ∈ A+ 2π, St ∈ B) = P(y,s)(Yt ∈ A, St ∈ B)

holds for all (y, s) ∈ R2 and all Borel sets A,B ⊂ R.

Proof. Denote by (Y y
t , S

s
t ) the unique solution of the SDE (2.1) with initial value

(Y y
0 , S

s
0) = (y, s). We assume without loss of generality that X0 ≡ 0. By definition,

the process (Y y+2π
t , Sst ) solves

Ŷt = y + 2π +Xt +

∫ t

0

W ′(Ŷr)Ŝr dr,

Ŝt = s+

∫ t

0

W ′′(Ŷr) dr.

Since the function W is periodic with period 2π, we know that W ′(Ŷr) = W ′(Ŷr−2π)

and W ′′(Ŷr) = W ′′(Ŷr − 2π). Therefore, (Y y+2π
t , Sst ) solves the system

Ŷt = y + 2π +Xt +

∫ t

0

W ′(Ŷr − 2π)Ŝr dr,

Ŝt = s+

∫ t

0

W ′′(Ŷr − 2π) dr.

By subtracting 2π from both sides of the first equation we get
Ŷt − 2π = y +Xt +

∫ t

0

W ′(Ŷr − 2π)Ŝr dr,

Ŝt = s+

∫ t

0

W ′′(Ŷr − 2π) dr.

Since the solutions are unique, this shows that (Y y+2π
t , St) = (Y y

t + 2π, St) from
which the claim follows. �

We can now use a rather general result on transformations of the state space due
to Dynkin [9, 10.25, Theorem 10.13], see also Glover [11] and Sharpe [16, Section
13].

Corollary 2.3. Let γ : R2 → S × R, γ(y, s) := (eiy, s) and (Yt, St) be the unique,
càdlàg strong Markov solution of the SDE (2.1). Then (Zt, St) = (eiYt , St) is also a
strong Markov process. Let Pt((y, s), A×B) denote the transition function of (Y, S)
and P St ((y, s), A×B) the transition function of (Z, S). Then for y, s ∈ R and Borel
sets A,B ⊂ R,

P St (γ(y, s), A×B) = Pt((y, s), γ
−1(A×B))

Proof. All we have to do is to verify Dynkin’s condition [9, 10.25.A] saying that

Pt((y, s), γ
−1(A×B)) = Pt((y

′, s′), γ−1(A×B))

holds for all Borel sets A ⊂ S, B ⊂ R and all points (y, s), (y′, s′) ∈ R2 such that
γ(y, s) = γ(y′, s′). Clearly, s = s′ and y − y′ = 2jπ for some j ∈ Z. Denote
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f(y) = eiy . Applying Lemma 2.2 repeatedly we find

P(y,s)
(
(Yt, St) ∈ γ−1(A×B)

)
= P(y,s)

(
Yt ∈ f−1(A), St ∈ B

)
= P(y+2πj,s)

(
Yt ∈ f−1(A) + 2πj, St ∈ B

)
= P(y+2πj,s)

(
Yt ∈ f−1(A), St ∈ B

)
= P(y+2πj,s)

(
(Yt, St) ∈ γ−1(A×B)

)
. �

We are going to calculate the generators of the processes Xt, (Yt, St) and (Zt, St).
By GX let us denote the generator of the semigroup, defined on the Banach space

(Cb(R), ‖ · ‖∞), of the process Xt. By D(GX) we denote the domain of GX . It is well
known that C2

b (R) ⊂ D(GX) and for f ∈ C2
b (R) we have GXf = −(−∆)α/2f , where

−(−∆)α/2f(x) = Aα lim
ε→0+

∫
|y−x|>ε

f(y)− f(x)

|x− y|1+α
dy, x ∈ R.

If f ∈ C2
b (R) is periodic with period 2π then we have

(2.5)

−(−∆)α/2f(x) = Aα lim
ε→0+

∫
π>|y−x|>ε

f(y)− f(x)

|x− y|1+α
dy

+ Aα

∑
n∈Z\{0}

∫
π>|y−x|

f(y)− f(x)

|x− y + 2nπ|1+α
dy.

In the sequel we will need the following auxiliary notation

Definition 2.4.

C∗(R
2) :=

{
f : R2 → R : ∃N > 0 supp(f) ⊂ R× [−N,N ],

f is bounded and uniformly continuous on R2
}
,

C2
∗(R

2) := C∗(R
2) ∩ C2

b (R2).

Let us define the transition semigroup {Tt}t≥0 of the process (Yt, St) by

(2.6) Ttf(y, s) = E(y,s) f(Yt, St), y, s ∈ R,
for functions f ∈ Cb(R2). Let G(Y,S) be the generator of {Tt}t≥0 and let D(G(Y,S))
be the domain of G(Y,S).

Lemma 2.5. We have C2
∗(R

2) ⊂ D(G(Y,S)) and for f ∈ C2
∗(R

2),

(2.7) G(Y,S)f(y, s) = −(−∆y)
α/2f(y, s)+W ′(y)sfy(y, s)+W

′′(y)fs(y, s), y, s ∈ R.

Proof. Let f ∈ C∗(R
2). Throughout the proof we will assume that supp(f) ⊂

R × (−M0,M0) for some M0 > 0. Note that for any starting point (Y0, S0) =
(y, s) ∈ R× [−M0,M0] and all 0 ≤ t ≤ 1,

|St| =
∣∣∣∣S0 +

∫ t

0

W ′′(Yr) dr

∣∣∣∣ ≤M0 + ‖W ′′‖∞.

Put
M1 = M0 + ‖W ′′‖∞.

Note that if (y, s) /∈ R× [−M1,M1] and (Y0, S0) = (y, s) then for any 0 ≤ t ≤ 1 we
have

|St| =
∣∣∣∣S0 +

∫ t

0

W ′′(Yr) dr

∣∣∣∣ > M1 − ‖W ′′‖∞ = M0,
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and, therefore, f(Yt, St) = 0. It follows that for any (y, s) /∈ R × [−M1,M1] and
0 < h ≤ 1 we have

E(y,s) f(Yh, Sh)− f(y, s)

h
= 0.

We may, therefore, assume that (y, s) ∈ R× [−M1,M1]. We will also assume that
0 < h ≤ 1.

As above we see that for any starting point (Y0, S0) = (y, s) ∈ R× [−M1,M1] and
all 0 ≤ t ≤ 1 we have |St| ≤ M1 + ‖W ′′‖∞. Set M2 := M1 + ‖W ′′‖∞. We assume
without loss of generality that X0 ≡ 0. Then

Yt = y +Xt +

∫ t

0

W ′(Yr)Sr dr,

St = s+

∫ t

0

W ′′(Yr) dr.

It follows that

Thf(y, s)− f(y, s)

h
=
E(y,s) f(Yh, Sh)− f(y, s)

h

=
1

h
E(y,s)[f(Yh, Sh)− f(Yh, s)] +

1

h
E(y,s)[f(Yh, s)− f(y, s)]

= I + II.

Using Taylor’s theorem we find

I = E(y,s)

[
1

h

∂f

∂s
(Yh, s)

∫ h

0

W ′′(Yr) dr +
1

2h

∂2f

∂s2
(Yh, ξ)

(∫ h

0

W ′′(Yr) dr

)2
]

= E(y,s)

[
1

h

∂f

∂s
(Yh, s)

∫ h

0

W ′′(y) dr +
1

h

∂f

∂s
(Yh, s)

∫ h

0

(W ′′(Yr)−W ′′(y)) dr

+
1

2h

∂2f

∂s2
(Yh, ξ)

(∫ h

0

W ′′(Yr) dr

)2
]
,

where ξ is a point between s and Sh. Note that

E(y,s)

[∣∣∣∣1h ∂f∂s (Yh, s)

∫ h

0

(
W ′′(Yr)−W ′′(y)

)
dr

∣∣∣∣]
≤ E(y,s)

[
1

h

∥∥∥∥∂f∂s
∥∥∥∥
∞

∫ h

0

{(
‖W ′′′‖∞

∣∣∣∣Xr +

∫ r

0

W ′(Yt)St dt

∣∣∣∣) ∧ 2‖W ′′‖∞
}
dr

]
≤
∥∥∥∥∂f∂s

∥∥∥∥
∞
E(y,s)

[{
‖W ′′′‖∞

(
sup

0≤r≤h
|Xr|+ h‖W ′‖∞M2

)}
∧ 2‖W ′′‖∞

]
−−−→
h→0+

0,

uniformly for all (y, s) ∈ R × [−M1,M1]. The convergence follows from the right
continuity of Xt and our assumption that X0 = 0. We also have

E(y,s)

[∣∣∣∣∣ 1

2h

∂2f

∂s2
(Yh, ξ)

(∫ h

0

W ′′(Yr) dr

)2
∣∣∣∣∣
]
≤
∥∥∥∥∂2f∂s2

∥∥∥∥
∞

h

2
‖W ′′‖2∞ −−−→

h→0+
0,
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uniformly for all (y, s) ∈ R × [−M1,M1]. Because Yh is right-continuous it is easy
to see that

E(y,s)

[
1

h

∂f

∂s
(Yh, s)

∫ h

0

W ′′(y) dr

]
−−−→
h→0+

∂f

∂s
(y, s)W ′′(y),

uniformly for all (y, s) ∈ R× [−M1,M1]. It follows that

I −−−→
h→0+

∂f

∂s
(y, s)W ′′(y),

uniformly for all (y, s) ∈ R× [−M1,M1].
Now let us consider II. We have

II =
1

h
E(y,s)[f(y +Xh, s)− f(y, s)] +

1

h
E(y,s)[f(Yh, s)− f(y +Xh, s)]

= II1 + II2.

It is well known that

II1 −−−→
h→0+

−(−∆y)
α/2f(y, s),

uniformly for all (y, s). We also have

II2 = E(y,s)

[
1

h

∂f

∂y
(y +Xh, s)

∫ h

0

W ′(Yr)Sr dr +
1

2h

∂2f

∂y2
(ξ, s)

(∫ h

0

W ′(Yr)Sr dr

)2
]

= E(y,s)

[
1

h

∂f

∂y
(y +Xh, s)

(∫ h

0

W ′(y)s dr +

∫ h

0

W ′(Yr)(Sr − s) dr

+

∫ h

0

(W ′(Yr)−W ′(y))s dr

)
+

1

2h

∂2f

∂y2
(ξ, s)

(∫ h

0

W ′(Yr)Sr dr

)2
]
,

where ξ is a point between y + Xh and Yh. Using similar arguments as above we
obtain

II2 −−−→
h→0+

∂f

∂y
(y, s)W ′(y)s,

uniformly for all (y, s) ∈ R× [−M1,M1].
It follows that

Thf(y, s)− f(y, s)

h
−−−→
h→0+

−(−∆y)
α/2f(y, s) +W ′(y)s

∂f

∂y
(y, s) +W ′′(y)

∂f

∂s
(y, s),

uniformly for all (y, s) ∈ R × [−M1,M1]. This means that f ∈ D(G(Y,S)) and (2.7)
holds. �

Remark 2.6. A weaker version of Lemma 2.5 can be proved as follows. If we rewrite
the SDE (2.1) in the form

d

(
Yt
St

)
=

(
1 W ′(Yt)St
0 W ′′(Yt)

)
d

(
Xt

t

)
= Φ(Yt, St) d

(
Xt

t

)
and notice that (Xt, t)

> is a two-dimensional Lévy process with characteristic ex-
ponent ψ(ξ, τ) = |ξ|α + iτ , we can use [15, Theorem 3.5, Remark 3.6] to deduce
that C∞c (R2) ⊂ D(G(Y,S)). This argument uses the fact that the SDE has only
jumps in the direction of the α-stable process, while it is local in the other direc-
tion. Theorem 3.1 of [15] now applies and shows that G(Y,S) is a pseudo-differential
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operator GY,Su(x, s) = (2π)−2
∫
R2 p(x, s; ξ, τ)Fu(ξ, τ) eixξ+isτ dξ dτ , where F denotes

the Fourier transform, with symbol

p(x, s; ξ, τ) = ψ(Φ(y, s)>(ξ, τ)>) = |ξ|α + iξW ′(x)s.

A Fourier inversion argument now shows that (2.7) holds for f ∈ C∞c (R2) and by a
standard closure argument we deduce from this that (2.7) also holds for f ∈ C2

0(R2).

We say that f ∈ C0(S × R) if and only if for every ε > 0 there exists a compact
set K ⊂ S×R such that |f(u)| < ε for u ∈ Kc. Let us define the semigroup {T St }t≥0
of the process (Zt, St) by

(2.8) T St f(z, s) = E(z,s) f(Zt, St), z ∈ S, s ∈ R,
for f belonging to C0(S×R). Let z = eiy, y ∈ R. For future reference, we note the
following consequences of Corollary 2.3,

(2.9) T St f(z, s) = E(z,s) f(Zt, St) = E(y,s) f(eiYt , St) = E(y,s) f̃(Yt, St) = Ttf̃(y, s),

and

(2.10) T̃ St f(y, s) = Ttf̃(y, s).

By Arg(z) we denote the argument of z ∈ C contained in (−π, π]. For g ∈ C2(S)
let us put

(2.11)

Lg(z) = Aα lim
ε→0+

∫
S∩{|Arg(w/z)|>ε}

g(w)− g(z)

|Arg(w/z)|1+α
dw

+ Aα

∑
n∈Z\{0}

∫
S

g(w)− g(z)

|Arg(w/z) + 2nπ|1+α
dw,

where Aα is the constant appearing in (2.5) and dw denotes the arc length measure
on S; note that

∫
S
dw = 2π.

Let G be the generator of the semigroup {T St }t≥0 and let D(G) be its domain.

Lemma 2.7. We have C2
c (S×R) ⊂ D(G) and for f ∈ C2

c (S×R),

Gf(z, s) = Lzf(z, s) + V ′(z)sfz(z, s) + V ′′(z)fs(z, s), z ∈ S, s ∈ R.

Proof. Let f ∈ C2
c (S×R). Note that f̃ ∈ C2

∗(R
2). We obtain from (2.7), for z = eiy,

y, s ∈ R,

lim
t→0+

T St f(z, s)− f(z, s)

t
= lim

t→0+

Ttf̃(y, s)− f̃(y, s)

t

= −(−∆)α/2f̃(y, s) +W ′(y)sf̃y(y, s) +W ′′(y)f̃s(y, s).(2.12)

By Lemma 2.5 this limit exists uniformly in z and s, i.e. f ∈ D(G).
We get from (2.5)

(2.13) −(−∆y)
α/2f̃(y, s) = Lzf(z, s).

Recall that we have W (y) = V (eiy), y ∈ R. Using our definitions we get V ′(z) =
W ′(y), V ′′(z) = W ′′(y) for z = eiy, y ∈ R. Hence (2.12) equals

Lzf(z, s) + V ′(z)sfz(z, s) + V ′′(z)fs(z, s),

which gives the assertion of the lemma. �
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We will need the following auxiliary lemma.

Lemma 2.8. For any f ∈ C2(S) we have∫
S

Lf(z) dz = 0.

Proof. Recall that Arg(z) denotes the argument of z ∈ C belonging to (−π, π]. First
we will show that

(2.14)

∫∫
S×S

1{w : |Arg(w/z)|>ε}(w)
f(w)− f(z)

|Arg(w/z)|1+α
dw dz = 0.

We interchange z and w, use Fubini’s theorem and observe that |Arg(z/w)| =
|Arg(w/z)|,∫∫

S×S
1{w : |Arg(w/z)|>ε}(w)

f(w)− f(z)

|Arg(w/z)|1+α
dw dz

=

∫∫
S×S

1{z : |Arg(z/w)|>ε}(z)
f(z)− f(w)

|Arg(z/w)|1+α
dz dw

=

∫∫
S×S

1{z : |Arg(z/w)|>ε}(z)
f(z)− f(w)

|Arg(z/w)|1+α
dw dz

= −
∫∫

S×S
1{w : |Arg(w/z)|>ε}(w)

f(w)− f(z)

|Arg(w/z)|1+α
dw dz,

which proves (2.14).
By interchanging z and w we also get that

(2.15)

∑
n∈Z\{0}

∫
S

∫
S

f(w)− f(z)

|Arg(w/z) + 2nπ|1+α
dw dz

=
∑

n∈Z\{0}

∫
S

∫
S

f(z)− f(w)

|Arg(z/w) + 2nπ|1+α
dz dw.

Note that for Arg(w/z) 6= π we have |Arg(z/w) + 2nπ| = |Arg(w/z)− 2nπ|. Hence
the expression in (2.15) equals 0.

Set

Lεf(z) :=

∫
S∩{|Arg(w/z)|>ε}

f(w)− f(z)

|Arg(w/z)|1+α
dw.

What is left is to show that

(2.16)

∫
S

lim
ε→0+

Lεf(z) dz = lim
ε→0+

∫
S

Lεf(z) dz.

By the Taylor expansion we have for f ∈ C2(S)

f(w)− f(z) = Arg(w/z)f ′(z) + Arg2(w/z)r(w, z), w, z ∈ S,
where |r(w, z)| ≤ c(f). Hence,

|Lεf(z)| =
∣∣∣∣∫
S∩{|Arg(w/z)|>ε}

r(w, z) Arg1−α(w/z) dw

∣∣∣∣
≤ c(f)

∫
S

|Arg1−α(w/z)| dw = c(f, α).

Therefore, we get (2.16) by the bounded convergence theorem. �
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We will identify the stationary measure for (Zt, St).

Proposition 2.9. For z ∈ S and s ∈ R let

ρ1(z) ≡ 1

2π
, ρ2(s) =

1√
2π

e−s
2/2, π(dz, ds) = ρ1(z)ρ2(s) dz ds.

Then for any f ∈ C2
c (S×R) we have∫

S

∫
R

Gf(z, s) π(dz, ds) = 0.

Proof. We have∫
S

∫
R

Gf(z, s) π(dz, ds)

=
1

2π

∫
S

∫
R

(
Lzf(z, s) + V ′(z)sfz(z, s) + V ′′(z)fs(z, s)

)
ρ2(s) ds dz.

Integrating by parts, we see that this is equal to

1

2π

∫
S

∫
R

Lzf(z, s)ρ2(s) ds dz −
1

2π

∫
S

∫
R

V ′′(z)sf(z, s)ρ2(s) ds dz

− 1

2π

∫
S

∫
R

V ′′(z)f(z, s)ρ2
′(s) ds dz = I + II + III.

Since ρ2
′(s) = −sρ2(s) we find that II + III = 0, while I = 0 by Lemma 2.8. The

claim follows. �

Proposition 2.10. For any t ≥ 0 we have

T St : C2
c (S×R)→ C2

c (S×R).

The proof of this proposition is quite difficult. It is deferred to the next section in
which we prove this result in much greater generality for solutions of SDEs driven
by Lévy processes.

Theorem 2.11. Let

π(dz, ds) =
1

(2π)3/2
e−s

2/2 dz ds, z ∈ S, s ∈ R.(2.17)

Then π is a stationary distribution of the process (Zt, St).

Proof. Let (Yt, St) be a Markov process satisfying the SDE (2.1) and (Zt, St) =
(eiYt , St). Recall that {T St }t≥0 is the semigroup on C0(S × R) defined by (2.8) and
G is its generator. Let P(R × R) and P(S × R) denote the sets of all probability
measures on R×R and S×R respectively. In this proof, for any µ̃ ∈ P(S×R) we
define µ ∈ P(R × R) by µ([0, 2π) × R) = 1 and µ(A × B) = µ̃(eiA × B) for Borel
sets A ⊂ [0, 2π), B ⊂ R.

Consider any µ̃ ∈ P(S×R) and the corresponding µ ∈ P(R×R).
For this µ there exists a Markov process (Yt, St) given by (2.1) such that (Y0, S0)

has the distribution µ. It follows that for any µ̃ ∈ P(S × R) there exists a Markov
process (Zt, St) given by (2.1) and Zt = eiYt such that (Z0, S0) has the distribution
µ̃. By Proposition 4.1.7 [10], (Zt, St) is a solution of the martingale problem for
(G, µ̃). The Hille-Yosida theorem shows that the assumptions of Theorem 4.4.1 [10]
are satisfied if we take A = A′ = G. Thus Theorem 4.4.1 [10] implies that for any
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µ̃ ∈ P(S × R), uniqueness holds for the martingale problem for (G, µ̃). Hence the
martingale problem for G is well posed.

Note that C2
c (S×R) is dense in C0(S×R), that is, in the set on which the semigroup

{T St }t≥0 is defined. It follows from Proposition 2.10 and Proposition 1.3.3 from [10]
that C2

c (S × R) is a core for G. Now using Proposition 2.9 and Proposition 4.9.2
from [10] we get that π is a stationary measure for G. This means that (Zt, St) has
a stationary distribution π. �

Theorem 2.12. The measure π defined in (2.17) is the unique stationary distribu-
tion of the process (Zt, St).

Proof. Suppose that for some càdlàg processes X1 and X2, processes (Y 1
t , S

1
t ) and

(Y 2
t , S

2
t ) satisfy

Y 1
t = y +X1

t +

∫ t

0

W ′(Y 1
r )S1

r dr,(2.18)

S1
t = s+

∫ t

0

W ′′(Y 1
r ) dr,(2.19)

Y 2
t = y +X2

t +

∫ t

0

W ′(Y 2
r )S2

r dr,(2.20)

S2
t = s+

∫ t

0

W ′′(Y 2
r ) dr.(2.21)

Then

|S1
t − S2

t | ≤
∫ t

0

|W ′′(Y 1
r )−W ′′(Y 2

r )| dr ≤ ‖W (3)‖∞
∫ t

0

|Y 1
r − Y 2

r | dr,(2.22)

and, therefore, for t ≤ 1,

|Y 1
t − Y 2

t | ≤ |X1
t −X2

t |+
∫ t

0

|W ′(Y 1
r )S1

r −W ′(Y 2
r )S2

r | dr

≤ |X1
t −X2

t |+
∫ t

0

|W ′(Y 1
r )(S1

r − S2
r )| dr +

∫ t

0

|(W ′(Y 1
r )−W ′(Y 2

r ))S2
r | dr

≤ |X1
t −X2

t |+ ‖W ′‖∞ sup
0≤r≤t

|S1
r − S2

r | t+ ‖W ′′‖∞ sup
0≤r≤t

|S2
r |
∫ t

0

|Y 1
r − Y 2

r | dr

≤ |X1
t −X2

t |+ ‖W ′‖∞ t ‖W (3)‖∞
∫ t

0

|Y 1
r − Y 2

r | dr

+ ‖W ′′‖∞ (|s|+ ‖W ′′‖∞t)
∫ t

0

|Y 1
r − Y 2

r | dr

≤ |X1
t −X2

t |+ (c1t+ c2|s|)
∫ t

0

|Y 1
r − Y 2

r | dr

≤ |X1
t −X2

t |+ (c1 + c2|s|)
∫ t

0

|Y 1
r − Y 2

r | dr.
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By Gronwall’s inequality,

sup
0≤r≤t

|Y 1
r − Y 2

r | ≤ sup
0≤r≤t

|X1
r −X2

r |+
∫ t

0

|X1
r −X2

r |(c1 + c2|s|) exp
{

(c1 + c2|s|) t
}
dr

≤ sup
0≤r≤t

|X1
r −X2

r |
(
1 + t(c1 + c2|s|) exp

{
(c1 + c2|s|)t

})
.

For t = 1, the inequality becomes

sup
0≤r≤1

|Y 1
r − Y 2

r | ≤ sup
0≤r≤1

|X1
r −X2

r |
(
1 + (c1 + c2|s|) exp

{
(c1 + c2|s|)

})
.(2.23)

We substitute (2.19) into (2.18) and rearrange terms to obtain,

X1
t = −y + Y 1

t −
∫ t

0

W ′(Y 1
r )

(
s+

∫ r

0

W ′′(Y 1
u ) du

)
dr.

We substitute the (non-random) number y for Y 1
t in the above formula to obtain

X1
t = −y + y −

∫ t

0

W ′(y)

(
s+

∫ r

0

W ′′(y) du

)
dr(2.24)

= −W ′(y)(ts+ t2W ′′(y)/2).

From now on, X1 will denote the process defined in (2.24). It is easy to see that X1
t

is well defined for all t ≥ 0. If we substitute this X1 into (2.18)–(2.19) then Yt ≡ y.
It follows from [18, Theorem II, p. 9], that every continuous function is in the

support of the distribution of the symmetric α-stable Lévy process on R. We will
briefly outline how to derive the last claim from the much more general result in
[18, Theorem II, p. 9]. One should take a( · ) ≡ 0 and b( · , z) ≡ z. Note that
the “skeleton” functions in [18, (5), p. 9] can have jumps at any times and of any
sizes so the closure of the collection of all such functions in the Skorokhod topology
contains the set of all continuous functions. Standard arguments then show that
every continuous function is in the support of the distribution of the stable process
also in the topology of uniform convergence on compact time intervals. We see that
if X1 is the continuous function defined in (2.24) and X2

t is a stable process as in
(2.1) then for every ε > 0 there exists δ > 0 such that,

P

(
sup

0≤r≤1
|X1

r −X2
r | ≤ ε

)
≥ δ.

This and (2.23) show that for any y, s ∈ R and ε > 0 there exists δ > 0 such that,

Py,s
(

sup
0≤r≤1

|X1
r −X2

r | ≤ ε, sup
0≤r≤1

|Y 2
r − y| ≤ ε

)
≥ δ.

Note that S can change by at most ‖W ′′‖∞ on any interval of length 1. This, the
Markov property and induction show that for any ε > 0 there exist δk > 0, k ≥ 1,
such that,

Py,s
(

sup
k≤r≤k+1

|X1
r −X2

r | ≤ 2−kε, sup
k≤r≤k+1

|Y 2
r − Y 2

k | ≤ 2−kε

)
≥ δk.
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where X1 is defined in (2.24). This implies that for any τ <∞, y, s ∈ R and ε > 0
there exists δ′ > 0 such that,

Py,s
(

sup
0≤r≤τ

|X1
r −X2

r | ≤ 2ε, sup
0≤r≤τ

|Y 2
r − y| ≤ 2ε

)
≥ δ′.(2.25)

Step 2. Recall that V is not identically constant. This and the fact that V ∈ C5

easily imply that W ′′ is strictly positive on some interval and it is strictly negative on
some other interval. We fix some a1, a2 ∈ (−π, π), b1 > 0, b2 < 0 and ε0 ∈ (0, π/100),
such that V ′′(z) > b1 for z ∈ S, Arg(z) ∈ [a1 − 4ε0, a1 + 4ε0], and V ′′(z) < b2 for
z ∈ S, Arg(z) ∈ [a2 − 4ε0, a2 + 4ε0].

Suppose that there exist two stationary probability distributions π and π̂ for

(Z, S). Let ((Zt, St))t≥0 and ((Ẑt, Ŝt))t≥0 be processes with (Z0, S0) and (Ẑ0, Ŝ0)
distributed according to π and π̂, respectively. The transition probabilities for these
processes are the same as for the processes defined by (2.1) and (2.4). Let X denote
the driving stable Lévy process for Z.

Let A be an open set such that W ′′(y) > c > 0 for all y ∈ A. In view of the
relationship between V and W , we can assume that A is periodic, that is, y ∈ A
if and only if y + 2π ∈ A. It follows easily from (2.1) that there exist q1 > 0 and
s1 < ∞ such that for any (Y0, S0), the process Y enters A at some random time
T1 ≤ s1 with probability greater than q1. Since Y is right continuous, if YT1 ∈ A
then Yt stays in A for all t in some interval (T1, T2), with T2 ≤ 2s1. Then (2.1)
implies that St 6= 0 for some t ∈ (T1, T2). A repeated application of the Markov
property at the times 2s1, 4s1, 6s1, . . . shows that the probability that St = 0 for all
t ≤ 2ks1 is less than (1− q1)k. Letting k → ∞, we see that St 6= 0 for some t > 0,
a.s.

Suppose without loss of generality that there exist ε1 > 0, t2 > 0 and p1 > 0 such
that Pπ(St2 > ε1) > p1. Let F1 = {St2 > ε1} and t3 = ε1/(2‖W ′′‖∞). It is easy to
see that for some p2 > 0,

Pπ
(
∃ t ∈ [t2, t2 + t3] : Arg(Zt) ∈ [a2 − ε0, a2 + ε0]

∣∣ F1

)
> p2.

This implies that there exist ε1 > 0, t2 > 0, t4 ∈ [t2, t2 + t3] and p3 > 0 such that,

Pπ(St2 > ε1,Arg(Zt4) ∈ [a2 − 2ε0, a2 + 2ε0]) > p3.

Note that |St4 − St2| ≤ ‖W ′′‖∞t3 < ε1/2. Hence,

Pπ(St4 > ε1/2,Arg(Zt4) ∈ [a2 − 2ε0, a2 + 2ε0]) > p3.

Let ε2 ∈ (ε1/2,∞) be such that

Pπ(St4 ∈ [ε1/2, ε2],Arg(Zt4) ∈ [a2 − 2ε0, a2 + 2ε0]) > p3/2.

Let t5 = 2ε2/|b2| and t6 = t4 + t5. By (2.25), for any ε3 > 0 and some p4 > 0,

Pπ
(

sup
t4≤r≤t6

|X1
r −Xr| ≤ ε3, St4 ∈ [ε1/2, ε2],

Arg(Zt) ∈ [a2 − 3ε0, a2 + 3ε0] for all t ∈ [t4, t6]
)
> p4,

where X1 is the function defined in (2.24). Since V ′′(z) < b2 < 0 for Arg z ∈
[a2 − 3ε0, a2 + 3ε0], if the event in the last formula holds then

St6 = St4 +

∫ t6

t4

V ′′(Zs) ds ≤ ε2 + b2t5 ≤ −ε2.
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This implies that,

Pπ
(

sup
t4≤r≤t6

|X1
r −Xr| ≤ ε3, St4 ≥ ε1/2, St6 ≤ −ε2

)
> p4.(2.26)

Step 3. By the Lévy-Itô representation we can write the stable Lévy process X in

the form Xt = Jt+X̃t, where J is a compound Poisson process comprising all jumps

of X which are greater than ε0 and X̃ = X − J is an independent Lévy process
(accounting for all small jumps of X). Let us denote by λ = λ(α, ε0) the rate of the
compound Poisson process J .

Let (Ỹ , S̃) be the solution to (2.1), with Xt replaced by X̃t for t ≥ t4. Take

ε3 < ε0/2. Then supt4≤r≤t6 |X
1
r − X̃r| ≤ ε3 entails that supt4≤r≤t6 |Jt4 − Jr| = 0.

Thus, (2.26) becomes

Pπ
(

sup
t4≤r≤t6

|X1
r − X̃r| ≤ ε3, S̃t4 ≥ ε1

2
, S̃t6 ≤ −ε2

)
≥ Pπ

(
sup

t4≤r≤t6
|X1

r − X̃r| ≤ ε3, sup
t4≤r≤t6

|Jt4 − Jr| = 0, S̃t4 ≥ ε1
2
, S̃t6 ≤ −ε2

)
> p4 > 0.

Let τ be the time of the first jump of J in the interval [t4, t6]; we set τ = t6 if
there is no such jump. We can represent {(Yt, St), 0 ≤ t ≤ τ} in the following way,

(Yt, St) = (Ỹt, S̃t) for 0 ≤ t < τ , Sτ = S̃τ , and Yτ = Ỹτ + Jτ − Jτ−.
We say that a non-negative measure µ1 is a component of a non-negative measure

µ2 if µ2 = µ1 + µ3 for some non-negative measure µ3. Let µ(dz, ds) = Pπ(Zτ ∈
dz, Sτ ∈ ds). We will argue that µ(dz, ds) has a component with a density bounded
below by c2 > 0 on S× (−ε2, ε1/2). We find for every Borel set A ⊂ S of arc length
|A| and every interval (s1, s2) ⊂ (−ε2, ε1/2)

µ(A× (s1, s2))

= Pπ (Zτ ∈ A, Sτ ∈ (s1, s2))

≥ Pπ
(
Zτ ∈ A, Sτ ∈ (s1, s2), sup

t4≤r≤t6
|X1

r − X̃r| ≤ ε3, S̃t4 ≥ ε1
2
, S̃t6 ≤ −ε2

)
≥ Pπ

(
ei(Jτ−Jτ−) ∈ e−iX̃τ−A, S̃τ ∈ (s1, s2),

sup
t4≤r≤t6

|X1
r − X̃r| ≤ ε3, S̃t4 ≥ ε1/2, S̃t6 ≤ −ε2, NJ = 1

)
.

Here NJ counts the number of jumps of the process J occurring during the interval
[t4, t6]. Without loss of generality we can assume that ε0 < 2π. In this case the
density of the jump measure of J is bounded below by c3 > 0 on (2π, 4π). Observe

that the processes (X̃, S̃) and J are independent. Conditional on {NJ = 1}, τ
is uniformly distributed on [t4, t6], and the probability of the event {NJ = 1} is
λ(t6 − t4)e−λ(t6−t4). Thus,

µ(A× (s1, s2))

≥c3|A|Pπ
(
S̃τ ∈ (s1, s2)

∣∣∣ sup
t4≤r≤t6

|X1
r − X̃r| ≤ ε3, S̃t4 ≥ ε1/2, S̃t6 ≤ −ε2, NJ = 1

)
× p4 · λ(t6 − t4)e−λ(t6−t4).
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Since the process S̃ spends at least (s2 − s1)/‖W ′′‖∞ units of time in (s1, s2) we
finally arrive at

µ(A, (s1, s2)) ≥ p4λe
−λ(t6−t4)c3|A|(s2 − s1)/‖W ′′‖∞.

This proves that µ(dz, ds) has a component with a density bounded below by c2 =
p4λe

−λ(t6−t4)c3/‖W ′′‖∞ on S× (−ε2, ε1/2).

Step 4. Let ε4 = ε1/2 ∧ ε2 > 0. We have shown that for some stopping time τ ,
Pπ(Zτ ∈ dz, Sτ ∈ ds) has a component with a density bounded below by c2 > 0 on
S× (−ε4, ε4). We can prove in an analogous way that for some stopping time τ̂ and

ε̂4 > 0, Pπ̂(Ẑτ̂ ∈ dz, Ŝτ̂ ∈ ds) has a component with a density bounded below by
ĉ2 > 0 on S× (−ε̂4, ε̂4).

Since π 6= π̂, there exists a Borel set A ⊂ S × R such that π(A) 6= π̂(A). More-
over, since any two stationary probability measures are either mutually singular or
identical, cf. [19, Chapter 2, Theorem 4], we have π(A) > 0 and π̂(A) = 0 for some
A. By the strong Markov property applied at τ and the ergodic theorem, see [19,
Chapter 1, page 12], we have Pπ-a.s.

lim
t→∞

(1/t)

∫ t

τ

1{(Zs,Ss)∈A} ds = π(A) > 0.

Similarly, we see that Pπ̂-a.s.

lim
t→∞

(1/t)

∫ t

τ̂

1{(Ẑs,Ŝs)∈A} ds = π̂(A) = 0.

Since the distributions of (Zτ , Sτ ) and (Ẑτ̂ , Ŝτ̂ ) have mutually absolutely continuous
components, the last two statements contradict each other. This shows that we
must have π = π̂. �

Remark 2.13. It is not hard to show that Theorem 2.11 holds even if we take α = 2
in (2.1), that is, if Xt is Brownian motion. It seems that for α = 2 uniqueness of
the stationary distribution can be proved using techniques employed in Proposition
4.8 in [1]. A close inspection of the proofs in this section reveals that our results
remain also valid if Xt is a symmetric Lévy process with jump measure having full
support.

3. Smoothness of Ttf

In this section, we will show that if f ∈ C2
b then Ttf ∈ C2

b where {Tt}t≥0 is
the semigroup of a process defined by a stochastic differential equation driven by
a Lévy process. We use this result to show Proposition 2.10 but it may well be
of independent interest. We found some related results in the literature but none
of them was sufficiently strong for our purposes. The key element of the proof are
explicit bounds for derivatives of the flow of solutions to the SDE. This is done in
Proposition 3.3. We provide a direct and elementary proof of this proposition. Note
that our bounds are non-random and do not depend on the sample path. This is a
new feature in this type of analysis since usually, see e.g. Kunita [12], the constants
are random since they are derived with the Kolmogorov-Chentsov-Totoki lemma or
a Borel-Cantelli argument. Let us, however, point out that there is an alternative
way of proving Proposition 3.3. It is possible to use [14, Theorems V.39, V.40] and
[14, formula (D), p. 305] to obtain bounds for derivatives of the flow. Since this
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alternative approach demands similar arguments and is not shorter than our proof
of Proposition 3.3, we decided to prove Proposition 3.3 directly.

Consider the following system of stochastic differential equations in Rn,

(3.1)


dY1(t) = dX1(t) + V1(Y (t)) dt,

...

dYn(t) = dXn(t) + Vn(Y (t)) dt,

where Y (t) = (Y1(t), . . . , Yn(t)) ∈ Rn, X(t) = (X1(t), . . . , Xn(t)) ∈ Rn. We assume
that X(0) = 0, X1, . . . , Xn are Lévy processes on R and Vi : Rn → R are locally Lip-
schitz. We allow X1, . . . , Xn to be degenerate, i.e. some or all Xi may be identically
equal to 0.

By [14, Theorem V.38] it follows that if Y (0) = x then there exists a stopping
time ζ(x, ω) : Rn × Ω → [0,∞] and there exists a unique solution of (3.1) with
Y (0) = x with lim supt→ζ(x,·) |Y (t)| = ∞ a.s. on ζ < ∞; ζ is called the explosion
time. In order to apply [14, Theorem V.38] we take in the equations marked (⊗)
in [14, p. 302] m = n + 1, X i

t = Yi(t), x
i = Yi(0), Zα

t = Xα(t) for α ∈ {1, . . . , n},
Zn+1
t = t and f iα = δαi for α, i ∈ {1, . . . , n} and f in+1(x) = Vi(x) for i ∈ {1, . . . , n}.
By Y x(t) we denote the process with starting point Y x(0) = x. In the rest of

this section, we will assume that (3.1) holds not only a.s. but for all ω ∈ Ω. More
precisely, we can and will assume that the solution to (3.1) is constructed on a
probability space Ω such that X(0) = 0 and

Y x(t) = x+X(t) +

∫ t

0

V (Y (s)) ds,

for all t ≥ 0 and all ω ∈ Ω.
Set

‖x‖ = max{|x1|, . . . , |xn|}, x = (x1, . . . , xn),

and

B∗(x, r) = {y ∈ Rn : ‖y − x‖ < r}, x ∈ Rn, r > 0.

For f : Rn → R and A ⊂ Rn we write D(1)f = ∇f ,

‖f‖∞,A = sup
x∈A
|f(x)|, ‖D(j)f‖∞,A =

∑
|α|=j

sup
x∈A
|Dαf(x)|,

‖f‖(j),A = ‖f‖∞,A + ‖D(1)f‖∞,A + . . .+ ‖D(j)f‖∞,A.

When A = Rn we drop A from this notation. For V = (V1, . . . , Vn) from (3.1) and
A ⊂ Rn we put

‖V ‖∞,A =
n∑
i=1

‖Vi‖∞,A, ‖D(j)V ‖∞,A =
n∑
i=1

‖D(j)Vi‖∞,A.

‖V ‖(j),A = ‖V ‖∞,A + ‖D(1)V ‖∞,A + . . .+ ‖D(j)V ‖∞,A.

For f : Rn → R, x ∈ Rn and 0 ≤ t <∞ we define the operator Tt by

(3.2) Ttf(x) = E
[
f(Y x(t)); t < ζ(x)

]
.



18 K. BURDZY T. KULCZYCKI AND R.L. SCHILLING

Before formulating the results for the process Y (t) let us go back for a moment
to the original problem (2.1), that is,{

dYt = dXt +W ′(Yt)St dt,

dSt = W ′′(Yt) dt.

This SDE is of type (3.1) because we can rewrite it as

(3.3)

{
dY1(t) = dX1(t) + V1(Y (t)) dt,

dY2(t) = dX2(t) + V2(Y (t)) dt,

where X1(t) = Xt is a symmetric α-stable Lévy process on R, α ∈ (0, 2), X2(t) ≡ 0,
V1(y1, y2) = W ′(y1)y2, V2(y1, y2) = W ′′(y1). By Lemma 2.1 there exists a unique
solution to this SDE and the explosion time for this process is infinite a.s. We want
to show that Ttf ∈ C2

b whenever f ∈ C2
b . Our proof of Theorem 3.1 requires that

Vi and its derivatives up to order 3 are bounded. However, V1(y1, y2) = W ′(y1)y2 is
not bounded on R2. We will circumvent this difficulty by proving in Proposition 3.6
that Ttf ∈ C2

∗(R
2) whenever f ∈ C2

∗(R
2), where C2

∗(R
2) is given by Definition 2.4.

Let us briefly discuss the reasons that made us choose this particular set of func-
tions, C2

∗(R
2). This discussion gives also an explanation for the specific assumptions

in the main result of this section, Theorem 3.1.
Assume that f ∈ C2(R2) and supp f ⊂ K0 = R × [−r, r], r > 0. Fix t0 < ∞. If
|s| = |S0| > r + t0‖W ′′‖∞ then for t ≤ t0,∣∣∣S(y,s)

t

∣∣∣ =

∣∣∣∣s+

∫ t

0

W ′′(Y (y,s)
u ) du

∣∣∣∣ > r

and, therefore,

Ttf(y, s) = E f
(
Y

(y,s)
t , S

(y,s)
t

)
= 0.

It follows that if t ≤ t0 then

(3.4) supp(Ttf) ⊂ K = R×
[
− r − t0‖W ′′‖∞, r + t0‖W ′′‖∞

]
.

For technical reasons, we enlarge K as follows,

K3 = R×
(
− r − t0‖W ′′‖∞ − 3, r + t0‖W ′′‖∞ + 3

)
.

In view of (3.4), we have to consider only starting points (y, s) ∈ K in order to
prove that Ttf ∈ C2

∗(R
2). Note that for the starting point (y, s) ∈ K3 and t ≤ t0 we

have ∣∣∣S(y,s)
t

∣∣∣ =

∣∣∣∣s+

∫ t

0

W ′′(Y (y,s)
u ) du

∣∣∣∣ ≤ r + 2t0‖W ′′‖∞ + 3.

Thus for all starting points (y, s) ∈ K3 and t ≤ t0,

(3.5)
(
Y

(y,s)
t , S

(y,s)
t

)
∈M := R×

[
− r − 2t0‖W ′′‖∞ − 3, r + 2t0‖W ′′‖∞ + 3

]
.

But the function V1(y1, y2) = W ′(y1)y2 is bounded on M . Using our assumptions
on W , namely, periodicity of W and W ∈ C5, we obtain also that the derivatives of
V1(y1, y2) = W ′(y1)y2 up to order 3 are bounded on M .

Now we return to the general process Y (t). Let us formulate the main result for
this process.
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Theorem 3.1. Let f : Rn → R be a function in C2
b . Fix 0 < t0 < ∞. Let Y x(t)

be a solution of (3.1). Assume that the explosion time ζ(x, ω) ≡ ∞ for all x ∈ Rn

and all ω ∈ Ω. Let Ttf be defined by (3.2). Assume that K ⊂ Rn, for every t ≤ t0
supp(Ttf) ⊂ K and that there exists a convex set M ⊂ Rn such that Y x(t, ω) ∈ M
for all x ∈ K3 :=

⋃
x∈K B

∗(x, 3), t ≤ t0, and ω ∈ Ω. Assume that ‖V ‖∞,M < ∞
and ‖D(j)V ‖∞,M <∞ for j = 1, 2, 3. Then we have

Ttf ∈ C2
b for all t ≤ t0.

Remark 3.2. When ‖V ‖(3) < ∞ (i.e. when the assumptions of Theorem 3.1 hold
with K = M = Rn) then the above theorem implies that we have for any f ∈ C2

b

Ttf ∈ C2
b for all t > 0.

The first step in proving Theorem 3.1 will be the following proposition.

Proposition 3.3. Fix 0 < t0 < ∞. Let Y x(t) be a solution of (3.1). Assume
that the explosion time ζ(x, ω) ≡ ∞ for all x ∈ Rn and all ω ∈ Ω. Let K ⊂ Rn.
Assume that there exists a convex set M ⊂ Rn such that Y x(t, ω) ∈ M for all
x ∈ K3 :=

⋃
x∈K B

∗(x, 3), t ≤ t0, and ω ∈ Ω. Assume that ‖V ‖(3),M <∞. Put

τ :=
1

2 ‖D(1)V ‖∞,M
∧ t0,

(1

0
:=∞

)
.(3.6)

For every ω ∈ Ω we have the following.

(i) For all 0 < t ≤ τ , x ∈ K2 =
⋃
x∈K B

∗(x, 2), h ∈ Rn, ‖h‖ < 1,

‖Y x+h(t, ω)− Y x(t, ω)‖ ≤ 2‖h‖.(3.7)

(ii) Recall that ei is the i-th unit vector in the usual orthonormal basis for Rn.
For all 0 < t ≤ τ , x ∈ K2, i ∈ {1, . . . , n},

DiY
x(t, ω) := lim

u→0

Y x+uei(t, ω)− Y x(t, ω)

u

exists, and

‖DiY
x(t, ω)‖ ≤ 2.(3.8)

We will write DiY
x(t, ω) = (DiY

x
1 (t, ω), . . . , DiY

x
n (t, ω)).

(iii) For all 0 < t ≤ τ , x ∈ K1 =
⋃
x∈K B

∗(x, 1), h ∈ Rn, ‖h‖ < 1, i ∈ {1, . . . , n},

‖DiY
x+h(t, ω)−DiY

x(t, ω)‖ ≤ 8 ‖D(2)V ‖∞,M τ ‖h‖.(3.9)

(iv) For all 0 < t ≤ τ , x ∈ K1, i, k ∈ {1, . . . , n},

DikY
x(t, ω) := lim

u→0

DiY
x+uek(t, ω)−DiY

x(t, ω)

u

exists and

‖DikY
x(t, ω)‖ ≤ 8 ‖D(2)V ‖∞,M τ.(3.10)

We will write DikY
x(t, ω) = (DikY

x
1 (t, ω), . . . , DikY

x
n (t, ω)).

(v) For all 0 < t ≤ τ , x ∈ K, h ∈ Rn, ‖h‖ < 1, i, k ∈ {1, . . . , n},

‖DikY
x+h(t, ω)−DikY

x(t, ω)‖
≤ 96 ‖D(2)V ‖2∞,M τ 2 ‖h‖+ 16 ‖D(3)V ‖∞,M τ ‖h‖.
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Remark 3.4. The existence of DiY
x(t) and DikY

x(t) follows from [14, Theorem
V.40]. What is new here are the explicit bounds for DiY

x(t) and DikY
x(t) which

are needed in the proof of Theorem 3.1, see Lemma 3.5. The proof of Proposition
3.3 is self-contained. We do not use [14, Theorem V.40].

Proof of Proposition 3.3. The proof has a structure that might be amenable to pre-
sentation as a case of mathematical induction. After careful consideration we came
to the conclusion that setting up an inductive argument would not shorten the proof.

Recall that we assume that (3.1) holds for all ω ∈ Ω, not only a.s. Throughout
this proof we fix one path ω ∈ Ω.

(i) Let x ∈ K2, h ∈ Rn, ‖h‖ < 1 and 0 < t ≤ τ . Recall that X(0) = 0. For any
1 ≤ j ≤ n we have

(3.11) Y x+h
j (t)− Y x

j (t) = hj +

∫ t

0

[
Vj(Y

x+h(s))− Vj(Y x(s))
]
ds.

Let

c1 := c1(x, h) := sup
0<t≤τ

‖Y x+h(t)− Y x(t)‖.

Note that for 0 < t ≤ τ we have Y x(t) ∈ M and Y x+h(t) ∈ M . By (3.11) and
‖V ‖∞,M <∞ we get that c1 is finite. Moreover,

‖Y x+h
j (t)− Y x

j (t)‖ ≤ ‖h‖+

∫ t

0

‖D(1)Vj‖∞,M‖Y x+h(s)− Y x(s)‖ ds

≤ ‖h‖+ τ ‖D(1)Vj‖∞,M c1.

Hence,

c1 ≤ ‖h‖+ τ ‖D(1)V ‖∞,M c1,

which, when combined with (3.6), gives

sup
0<t≤τ

‖Y x+h(t)− Y x(t)‖ = c1 ≤
‖h‖

1− τ ‖D(1)V ‖∞,M
≤ 2‖h‖.

(ii) Denote

Rx,h
j (t) = Y x+h

j (t)− Y x
j (t)

and Rx,h(t) = (Rx,h
1 (t), . . . , Rx,h

n (t)). Using the Taylor expansion we get from (3.11),

(3.12) Rx,h
j (t) = hj +

∫ t

0

D(1)Vj(Y
x(s)) ·Rx,h(s) ds+O(‖h‖2).

For i ∈ {1, . . . , n} and h = uei, let

c2 = c2(x, i) = max
1≤j≤n

sup
0<t≤τ

(
lim sup
u→0

Rx,h
j (t)

u
− lim inf

u→0

Rx,h
j (t)

u

)
.

Note that c2 is finite because for u ∈ (−1, 1) we have |Rx,h
j (t)| ≤ 2u, by (3.7).

Consider 0 < t ≤ τ , x ∈ K2, i, j ∈ {1, . . . , n}. From (3.12) we obtain for u, u′ ∈
(−1, 1) \ {0}, h = uei and h′ = u′ei,

Rx,h
j (t)

u
−
Rx,h′

j (t)

u′
=

∫ t

0

n∑
k=1

DkVj(Y
x(s))

(
Rx,h
k (s)

u
− Rx,h′

k (s)

u′

)
ds+O(u) +O(u′).



STATIONARY DISTRIBUTIONS FOR JUMP PROCESSES 21

Letting u, u′ → 0 leads to

lim sup
u→0

Rx,h
j (t)

u
− lim inf

u′→0

Rx,h′

j (t)

u′
≤ τ ‖D(1)V ‖∞,M · c2,

and since 0 < t ≤ τ and j ∈ {1, . . . , n} are arbitrary, we get

c2 ≤ τ ‖D(1)V ‖∞,M · c2.
So c2 = 0 which means that DiY

x(t) exists. Estimate (3.8) is now an easy conse-
quence of (3.7).

(iii) From (3.12) and the bounded convergence theorem, we obtain

(3.13) DiY
x
j (t) = δij +

∫ t

0

D(1)Vj(Y
x(s)) ·DiY

x(s) ds.

Let x ∈ K1, h ∈ Rn, ‖h‖ < 1 and i ∈ {1, . . . , n}. Set

c3 := c3(x, h, i) := sup
0<t≤τ

‖DiY
x+h(t)−DiY

x(t)‖.

Because of (3.8), c3 is finite. For any 0 < t ≤ τ we have

(3.14)

DiY
x+h
j (t)−DiY

x
j (t)

=

∫ t

0

[
D(1)Vj(Y

x+h(s)) ·DiY
x+h(s)−D(1)Vj(Y

x(s)) ·DiY
x(s)

]
ds

=

∫ t

0

( [
D(1)Vj(Y

x+h(s))−D(1)Vj(Y
x(s))

]
·DiY

x+h(s)

+D(1)Vj(Y
x(s)) ·

[
DiY

x+h(s)−DiY
x(s)

] )
ds,

so∣∣DiY
x+h
j (t)−DiY

x
j (t)

∣∣ ≤ ∫ t

0

[
n∑
k=1

|DkVj(Y
x+h(s))−DkVj(Y

x(s))| |DiY
x+h
k (s)|

+
n∑
k=1

|DkVj(Y
x(s))| |DiY

x+h
k (s)−DiY

x
k (s)|

]
ds.

In view of (3.7) and (3.8), we have for 0 < s ≤ τ ,
n∑
k=1

|DkVj(Y
x+h(s))−DkVj(Y

x(s))| ≤ ‖D(2)V ‖∞,M‖Y x+h(s)− Y x(s)‖

≤ 2 ‖D(2)V ‖∞,M‖h‖,

‖DiY
x+h(s)‖ ≤ 2,

n∑
k=1

|DkVj(Y
x(s))| ≤ ‖D(1)V ‖∞,M .

It follows that

|DiY
x+h
j (t)−DiY

x
j (t)| ≤ 4 ‖D(2)V ‖∞,M τ ‖h‖+ τ ‖D(1)V ‖∞,M · c3,

so,
c3 ≤ 4 ‖D(2)V ‖∞,M τ ‖h‖+ τ ‖D(1)V ‖∞,M · c3.

By definition, τ ≤ 1/(2‖D(1)V ‖∞,M), so

c3 ≤ 4 ‖D(2)V ‖∞,M τ ‖h‖+ c3/2.
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This gives

sup
0<t≤τ

‖DiY
x+h(t)−DiY

x(t)‖ = c3 ≤ 8 ‖D(2)V ‖∞,M τ ‖h‖.

(iv) Set

Qx,h
i,j (t) := DiY

x+h
j (t)−DiY

x
j (t)

and Qx,h
i (t) = (Qx,h

i,1 (t), . . . , Qx,h
i,n (t)). Using the Taylor expansion we get from (3.14),

(3.15)

Qx,h
i,j (t) =

∫ t

0

n∑
l=1

DiY
x+h
l (s)

n∑
m=1

DlmVj(Y
x(s))Rx,h

m (s) ds+O(‖h‖2)

+

∫ t

0

D(1)Vj(Y
x(s)) ·Qx,h

i (s) ds

=

∫ t

0

n∑
l=1

DiY
x+h
l (s)D(1)DlVj(Y

x(s)) ·Rx,h(s) ds+O(‖h‖2)

+

∫ t

0

D(1)Vj(Y
x(s)) ·Qx,h

i (s) ds.

Consider k ∈ {1, . . . , n} and let h = uek. Define

c4 := c4(x, i, k) := max
1≤j≤n

sup
0<t≤τ

(
lim sup
u→0

Qx,h
i,j (t)

u
− lim inf

u→0

Qx,h
i,j (t)

u

)
.

Note that c4 is finite because we have |Qx,h
i,j (t)| ≤ 8 ‖D(2)V ‖∞,M τ u for u ∈ (−1, 1),

by (3.9). For u, u′ ∈ (−1, 1) \ {0}, h = uek and h′ = u′ek, (3.15) implies that,

Qx,h
i,j (t)

u
−
Qx,h′

i,j (t)

u′
=

∫ t

0

n∑
l=1

DiY
x+h
l (s)D(1)DlVj(Y

x(s)) · R
x,h(s)

u
ds+O(u)

−
∫ t

0

n∑
l=1

DiY
x+h′

l (s)D(1)DlVj(Y
x(s)) · R

x,h′(s)

u′
ds+O(u′)

+

∫ t

0

D(1)Vj(Y
x(s))

(
Qx,h
i (s)

u
− Qx,h′

i (s)

u′

)
ds.

The first two integrals cancel in the limit as u, u′ → 0. To see that we can pass
to the limit, we use the bounded convergence theorem. This theorem is applicable
because (3.7) provides a bound for 1

u
Rx,h(s), (3.8) provides a bound for DiY

x+h
l (s)

and we also have ‖D(2)V ‖∞,M <∞, by assumption. Letting u, u′ → 0 we get

lim sup
u→0

Qx,h
i,j (t)

u
− lim inf

u′→0

Qx,h′

i,j (t)

u′
≤ τ ‖D(1)V ‖∞,M · c4.

Since 0 < t ≤ τ and j ∈ {1, . . . , n} are arbitrary we see that

c4 ≤ τ ‖D(1)V ‖∞,M · c4,

so c4 = 0; this proves that DikY
x(t) exists. The estimate (3.10) follows now from

(3.9).
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(v) By (3.15) we get for h = uek

DikY
x
j (t) = lim

u→0

Qx,h
i,j (t)

‖h‖
=

∫ t

0

n∑
l=1

DiY
x
l (s)D(1)DlVj(Y

x(s)) ·DkY
x(s) ds

+

∫ t

0

D(1)Vj(Y
x(s))DikY

x(s) ds.

Let x ∈ K, h ∈ Rn, ‖h‖ < 1 and i, k ∈ {1, . . . , n}. Put

c5 := c5(x, h, i, k) := sup
0<t≤τ

‖DikY
x+h(t)−DikY

x(t)‖.

Because of (3.10), c5 is finite. For any 0 < t ≤ τ and j ∈ {1, . . . , n} we have

DikY
x+h
j (t)−DikY

x
j (t)

=

∫ t

0

n∑
l=1

n∑
m=1

[
DiY

x+h
l (s)DlmVj(Y

x+h(s))DkY
x+h
m (s)

−DiY
x
l (s)DlmVj(Y

x(s))DkY
x
m(s)

]
ds

+

∫ t

0

n∑
l=1

[
DlVj(Y

x+h(s))DikY
x+h
l (s)−DlVj(Y

x(s))DikY
x
l (s)

]
ds

= I + II.

We obtain from (3.8), (3.9) and (3.10),

|I| ≤
∫ t

0

n∑
l=1

n∑
m=1

[ ∣∣DlmVj(Y
x+h(s))DiY

x+h
l (s)

[
DkY

x+h
m (s)−DkY

x
m(s)

]∣∣
+
∣∣DlmVj(Y

x+h(s))DkY
x
m(s)

[
DiY

x+h
l (s)−DiY

x
l (s)

]∣∣
+
∣∣DiY

x
l (s)DkY

x
m(s)

[
DlmVj(Y

x+h(s))−DlmVj(Y
x(s))

]∣∣ ]ds
≤ τ

[
‖D(2)V ‖2∞,M 32 τ ‖h‖+ 8 ‖D(3)V ‖∞,M ‖h‖

]
,

as well as

|II| ≤
∫ t

0

n∑
l=1

[ ∣∣DlVj(Y
x+h(s))

[
DikY

x+h
l (s)−DikY

x
l (s)

]∣∣
+
∣∣DikY

x
l (s)

[
DlVj(Y

x+h(s))−DlVj(Y
x(s))

]∣∣ ]ds
≤ τ

[
‖D(1)V ‖∞,M · c5 + 16 ‖D(2)V ‖2∞,Mτ ‖h‖

]
.

Combining these two estimates we find for all 0 < t ≤ τ and 1 ≤ j ≤ n,

|DikY
x+h
j (t)−DikY

x
j (t)|

≤ 48 ‖D(2)V ‖2∞,M τ 2‖h‖+ 8 ‖D(3)V ‖∞,Mτ ‖h‖+ τ ‖D(1)V ‖∞,M · c5.
Hence,

c5 ≤ 48 ‖D(2)V ‖2∞,M τ 2 ‖h‖+ 8 ‖D(3)V ‖∞,M τ ‖h‖+ τ ‖D(1)V ‖∞,M · c5,
so, recalling (3.6),

c5 ≤ 96 ‖D(2)V ‖2∞,M τ 2 ‖h‖+ 16 ‖D(3)V ‖∞,M τ ‖h‖,
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which finishes the proof. �

The next step in proving Theorem 3.1 is the following lemma.

Lemma 3.5. Let g : Rn → R be a function in C2
b . Fix 0 < t1 <∞ and let Y x(t) be

the solution of (3.1). Assume that the explosion time ζ(x, ω) ≡ ∞ for all x ∈ Rn

and all ω ∈ Ω. Let Ttg be defined by (3.2). Assume that K ⊂ Rn, for every t ≤ t1
suppTtg ⊂ K and there exists a convex set M ⊂ Rn such that Y x(t, ω) ∈M for all
x ∈ K3 :=

⋃
x∈K B

∗(x, 3), t ≤ t1 and ω ∈ Ω. Assume that ‖V ‖(3),M <∞ and let

τ̃ =
1

2 ‖D(1)V ‖∞,M
∧ t1

(1

0
:=∞

)
.

Then we have

(i) For all 0 < t ≤ τ̃ , x ∈ K and i ∈ {1, . . . , n}, the derivative DiTtg(x) exists
and

(3.16) DiTtg(x) = E
(
D(1)g(Y x(t))DiY

x(t)
)
.

(ii) For all 0 < t ≤ τ̃ , x ∈ K and i, k ∈ {1, . . . , n}, the derivative DikTtg(x)
exists and

DikTtg(x)

(3.17)

= E

(
D(1)g(Y x(t)) · DikY

x(t) +
n∑
j=1

DiY
x
j (t)D(1)(Djg)(Y x(t)) · DkY

x(t)

)
.

(iii) For all 0 < t ≤ τ̃ and i, k ∈ {1, . . . , n}, the derivative DikTtg(x) is continuous
for x ∈ K.

Proof. (i) Let 0 < t ≤ τ̃ , x ∈ K, fix i ∈ {1, . . . , n} and let h = uei. By Taylor’s
theorem and (3.7), we get,

DiTtg(x) = lim
u→0

Ttg(x+ h)− Ttg(x)

u

= lim
u→0

E

(
g(Y x+h(t))− g(Y x(t))

u

)
= lim

u→0
E

(
D(1)g(Y x(t)) · (Y x+h(t)− Y x(t))

u

)
+ lim

u→0
E

(∑
1≤l,m≤nDlmg(ξ)(Y x+h

l (t)− Y x
l (t))(Y x+h

m (t)− Y x
m(t))

2u

)

= E
(
D(1)g(Y x(t)) ·DiY

x(t)
)

+ lim
u→0

E

(
O

(
‖Y x+h(t)− Y x(t)‖2

u

))
= E

(
D(1)g(Y x(t)) ·DiY

x(t)
)
,

where ξ = ξx,h,t,l,m is an intermediate point between Y x(t) and Y x+h(t). This yields
(3.16).
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(ii) Fix i, k ∈ {1, . . . , n} and let h = uek. We have, using (i),

DikTtg(x) = lim
u→0

DiTtg(x+ h)−DiTtg(x)

u

= lim
u→0

E

(
D(1)g(Y x+h(t)) ·DiY

x+h(t)−D(1)g(Y x(t)) ·DiY
x(t)

u

)
= lim

u→0
E

(
D(1)g(Y x+h(t)) · (DiY

x+h(t)−DiY
x(t))

u

)
+ lim

u→0
E

(
DiY

x(t) · (D(1)g(Y x+h(t))−D(1)g(Y x(t)))

u

)
= I + II.

By (3.9) and bounded convergence theorem,

I = E
(
D(1)g(Y x(t)) ·DikY

x(t)
)
.

We apply the Taylor theorem, (3.7) and the bounded convergence theorem to see
that

II = lim
u→0

E

(∑n
j=1DiY

x
j (t)(Djg(Y x+h(t))−Djg(Y x(t)))

u

)

= lim
u→0

E

(∑n
j=1DiY

x
j (t)D(1)(Djg)(Y x(t)) · (Y x+h(t)− Y x(t))

u

)

+ lim
u→0

E

(
O

(
‖Y x+h(t)− Y x(t)‖2

u

))
= E

(
n∑
j=1

DiY
x
j (t)D(1)(Djg)(Y x(t)) ·DkY

x(t)

)
.

This proves (3.17).

(iii) By Proposition 3.3, all derivatives on the right hand side of (3.17) are con-
tinuous. Thus the function DikTtg(x) is continuous for x ∈ K, i, k ∈ {1, . . . , n} and
0 < t ≤ τ̃ . This proves (iii). �

Proof of Theorem 3.1. We set

τ :=
1

2 ‖D(1)V ‖∞,M
∧ t0.

We will use induction. The induction step is the following. Assume that Tsf ∈ C2
b

for some s ∈ [0, t0]. We will show that for all r ≤ τ such that s + r ≤ t0 we have
Ts+rf ∈ C2 and ‖Ts+rf‖(2) <∞. To show this we use Lemma 3.5. Put g = Tsf and
t1 = t0−s. Note that r ≤ τ∧t1 = τ̃ and g = Tsf satisfies the assumptions of Lemma
3.5. Hence we obtain that Tr+sf = Trg ∈ C2. A combination of the estimates
(3.16), (3.17), the fact that suppTrg ⊂ K and the estimates from Proposition 3.3
yield ‖Trg‖(2) <∞.

An assumption of Theorem 3.1 states that f ∈ C2
b . Hence, T0f = f ∈ C2

b . The
induction step shows that Tsf ∈ C2

b for all s ≤ τ ∧ t0. Subsequent induction steps
extend this claim to Tsf ∈ C2

b for all s ≤ jτ ∧ t0, j = 2, 3, . . . Therefore, Tsf ∈ C2
b

for all s ≤ t0. �
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Proposition 3.6. Let {Tt}t≥0 be the semigroup given by (2.6) of the the process
(Yt, St) defined by (2.1). Let C2

∗(R
2) be the class of functions given by Definition

2.4. We have

Tt : C2
∗(R

2)→ C2
∗(R

2).

Proof. We will repeat some of the arguments given before the statement of Theorem
3.1. Note that the SDE (2.1) is of the form (3.1). By Lemma 2.1 there exists a
unique solution of (2.1) with explosion time ζ((y, s), ω) ≡ ∞ for all (y, s) ∈ R2 and
ω ∈ Ω. Suppose that f ∈ C2

∗(R
2). Then supp f ⊂ R× [−r, r], for some r > 0. Fix

t0 > 0. By (3.4), for any t ≤ t0, we have

suppTtf ⊂ K := R×
[
− r − t0‖W ′′‖∞, r + t0‖W ′′‖∞

]
.(3.18)

We have

K3 =
⋃

(y,s)∈K

B∗((y, s), 3) = R×
(
− r − t0‖W ′′‖∞ − 3, r + t0‖W ′′‖∞ + 3

)
.

Let

M = R×
[
− r − 2t0‖W ′′‖∞ − 3, r + 2t0‖W ′′‖∞ + 3

]
.

By (3.5) we have (Y
(y,s)
t , S

(y,s)
t ) ∈ M for all (y, s) ∈ K3. Rewriting (2.1) as (3.3)

we have V1(y1, y2) = W ′(y1)y2, V2(y1, y2) = W ′′(y1). Since W ∈ C5 and since it
is periodic, we get ‖V ‖(3),M < ∞. Therefore, the solution of (3.3) satisfies the
assumptions of Theorem 3.1. It follows that for any t ≤ t0 we have

Ttf ∈ C2 and ‖Ttf‖(2) <∞.

This and (3.18) yield Ttf ∈ C2
∗(R

2). �

Proof of Proposition 2.10. Suppose that f ∈ C2
c (S×R). Then f̃ ∈ C2

∗(R
2) where f̃

is given by (2.3). By Proposition 3.6, Ttf̃ ∈ C2
∗(R

2). Using this and (2.10) we get
T St f ∈ C2

c (S×R). �
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