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Abstract

We prove a uniform boundary Harnack inequality for nonnegative harmonic
functions of the fractional Laplacian on arbitrary open sets D. This yields a unique
representation of such functions as integrals against measures on Dc∪{∞} satisfying
an integrability condition. The corresponding Martin boundary of D is a subset of
the Euclidean boundary determined by an integral test.

1 Main results and introduction

Let d = 1, 2, . . ., and 0 < α < 2. The boundary Harnack principle (BHP) for nonnegative
harmonic functions of the fractional Laplacian

∆α/2ϕ(x) = lim
ε→0+

∫
|y|>ε

[ϕ(y)− ϕ(x)] ν(x, y)dy , (1)

was proved for Lipschitz domains in 1997 ([9]). Here

ν(x, y) = Ad,−α|y − x|−d−α ,

Ad,γ = Γ((d − γ)/2)/(2γπd/2|Γ(γ/2)|) for −2 < γ < 2, and, say, ϕ ∈ C∞
c (Rd). BHP was

extended to all open sets in 1999 ([38]), with the constant in the estimate depending on
local geometry of their boundary (compare Corollary 1 below). The question whether the
constant may be chosen independently of the domain, or uniformly, was since open.

In what follows D is a domain i.e. an open nonempty subset of Rd. Let GD be the
Green function of D for ∆α/2 ([32], [7], [36]). We define the Poisson kernel of D:

PD(x, y) =

∫
D

GD(x, v)ν(v, y) dv , x ∈ Rd , y ∈ Dc . (2)
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By a calculation of M. Riesz (see [8], [37]), for the ball Br = {x ∈ Rd : |x| < r} we have

PBr(x, y) = Cd,α

(
r2 − |x|2

|y|2 − r2

)α/2
1

|x− y|d
, x ∈ Br , y ∈ Bc

r . (3)

Note that PBr(x, y) ≈ f(x)g(y) at ∂Br provided x and y are not too close. Similar ap-
proximate factorization of general PD underlies the following theorem which is equivalent
to the uniform BHP (UBHP) for ∆α/2.

Theorem 1 (UBHP) There is a constant Cd,α, depending only on d and α, such that

PD(x1, y1)PD(x2, y2) ≤ Cd,α PD(x1, y2)PD(x2, y1) , (4)

for every D ⊂ B1 provided x1, x2 ∈ D ∩B1/2 and y1, y2 ∈ Bc
1.

We will often use the following auxiliary function

sD(x) =

∫
D

GD(x, v)dv . (5)

Our next result is a refinement of (4).

Theorem 2 If 0 ∈ ∂D, D ⊂ B1, and |y| ≥ 1 then

lim
D3x→0

PD(x, y)

sD(x)
exists. (6)

We say that D is thin at a point y ∈ Rd if∫
D

sD∩B(y,1)(v) ν(v, y)dv < ∞ , (7)

and we say that D is thick at y if∫
D

sD∩B(y,1)(v) ν(v, y)dv = ∞ . (8)

We say D is thin at infinity if sD(x) < ∞ for all x ∈ D; otherwise D is thick at infinity.
We consider the set ∂D∗ of limit points of D: we let ∂D∗ = ∂D if D is bounded and

∂D∗ = ∂D ∪ {∞} if D is unbounded. Here, for unbounded D, D 3 v → ∞ means that
v ∈ D and |v| → ∞. We also let D∗ = D ∪ ∂D∗.

Theorem 1 and Theorem 2 apply to the asymptotics of GD at ∂D, and to the structure
of nonnegative functions harmonic for ∆α/2, or α-harmonic, on D (for definitions see
below). If D ⊂ Rd is Greenian we fix an arbitrary reference point x0 ∈ D and by using
UBHP we define the Martin kernel of D:

MD(x, y) = lim
D3v→y

GD(x, v)

GD(x0, v)
, x ∈ Rd , y ∈ ∂D∗ . (9)
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Theorem 3 MD(x, y) is α-harmonic in x on D if and only if D is thick at y. If D
is thin at y ∈ ∂D then MD(x, y) = PD(x, y)/P (x0, y). If D is thin at infinity then
MD(x,∞) = sD(x)/sD(x0).

We define ∂DM = {y ∈ ∂D∗ : D is thick at y} and Dc
M = {y ∈ Dc : D is thin at y}.

Theorem 4 Let D be Greenian. For every f ≥ 0 which is α-harmonic in D there are
unique nonnegative measures λ on Dc

M , and µ on ∂MD, such that

f(x) =

∫
Dc

M

PD(x, y)λ(dy) +

∫
∂MD

MD(x, y)µ(dy) , x ∈ D . (10)

As a part of the above statement we have that |µ| < ∞, and∫
Dc

PD(x0, y)λ(dy) < ∞ . (11)

We remark that for non-Greenian D nonnegative harmonic functions are constant, see
Lemma 15 below.

The above theorems complete and extend in several directions part of the results of
[9], [30], [38], [31], [10], [20], [34]. The role of BHP in explicit determination of the Martin
boundary in the classical potential theory is well recognized, see recent [1] and [2]; see
also [6], [5], and [3] for more references. The role of BHP in estimating the Green function
and studying Schrödinger-type operators is also well understood. We refer the reader to
[11], [28], [12], [19], and [13], [14], [21]; and [24], [24] for a general viewpoint.

Theorem 3 and Theorem 4 contrast sharply with the corresponding results in the
classical potential theory ([3], [35]), where the Martin kernel, if not as explicitly defined
as in (9), is always harmonic, and the Martin boundary, tantamount to the domain of
integration in the second integral in (10), is generally finer than the Euclidean boundary
(see also [5] for Lipschitz domains). The first integral in (10) reflects the fact that ∆α/2 is a
representative of nonlocal integro-differential operators. The paper is primarily addressed
to the readers interested in the potential theory of such operators. The theory presently
undergoes a rapid development, see [27] and the references given there. The outline and
notions which we propose below may likely apply to such operators and their nonnegative
functions quite generally. Technically, the development hinges on Lemma 7 and Lemma 8
below, and extensions of these should be sought for in the more general context.

The remainder of the paper is organized as follows. In Section 2 we give preliminary
definitions and results. In Section 3 we prove Theorem 1. We also state our UBHP in a
more traditional form, see Corollary 1. Theorem 2 is verified, in a much stronger form,
in Section 4. In Section 5 we define harmonicity. In Section 6 we verify Theorem 3 and
joint continuity of MD(x, y). In Section 7 we obtain the Martin representation (10) along
with its converse. In Section 8 we prove absolute continuity of harmonic measure on Dc

M

and give examples of thin and thick boundary points. For instance D = {(x, y) ∈ R2 :
y > |x|γ} is thin at 0 if and only if γ < 1.
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2 Preliminaries

For x ∈ Rd and r > 0 we let |x| =
√∑d

i=1 x2
i , B(x, r) = {y ∈ R : |y − x| < r},

Br = B(0, r), and B = B1. All the sets, functions and measures considered in the sequel
will be Borel. For U ⊂ Rd we write U c = Rd \ U . If k > 0 then kU = {kx : x ∈ U}. For
a measure λ on Rd, |λ| denotes its total mass. For a function f we let λ(f) =

∫
fdλ if the

integral makes sense. The probabilistic measure concentrated at x will be denoted by εx.
For nonnegative f and g and a positive number C we write f � C g for C−1f ≤ g ≤ Cf .
In what follows U will be an arbitrary domain. We will say that U is Greenian if GU(x, v)
is finite almost everywhere on U × U . U is always Greenian when α < d. If α ≥ d = 1,
then U is Greenian if and only if U c is non-polar. In particular, if α > d = 1, then U is
Greenian unless U = R. Here and below we refer the reader to [36], [32], and [7].

If U is Greenian then∫
U

GU(x, v)∆α/2ϕ(v)dv = −ϕ(x) , x ∈ Rd , ϕ ∈ C∞
c (U) . (12)

Furthermore, GU(x, v) = GU(v, x) for x, v ∈ Rd. The harmonic measure, ω, may be used
to negotiate betweeen Green functions of Greenian domains:

GD(x, v) = GU(x, v) +

∫
GD(w, v)ωx

U(dw) , x, v ∈ Rd , U ⊂ D . (13)

By integrating (13) against the Lebesgue measure we obtain

sD(x) = sU(x) +

∫
sD(y)ωx

U(dy) , x ∈ Rd , U ⊂ D . (14)

Recall that supp ωx
U ⊂ U c, x ∈ Rd. If U ⊂ D then

ωx
D(A) = ωx

U(A) +

∫
D\U

ωy
D(A)ωx

U(dy) , A ⊂ Dc , (15)

in particular GU(x, v) ≤ GD(x, v) and ωx
U(A) ≤ ωx

D(A) provided A ⊂ Dc, x, v ∈ U .
Moreover, if D1 ⊂ D2 ⊂ . . . and D =

⋃
Dn, then GDn(x, v) ↑ GD(x, v) and ωx

Dn
(ϕ) →

ωx
D(ϕ) whenever x, v ∈ D and ϕ ∈ C0(R

d) ([7]).
A point y ∈ Dc is called regular for D if GD(x, y) = 0 for x ∈ D, and it is called

irregular otherwise ([32], [36]).
Let ϕ ∈ C∞

c (Rd), supp ϕ ∩D = ∅, and let open Greenian D′ contain both D and the
support of ϕ. Using (12) for D and D′, (13), and Fubini we obtain∫

D

GD(x, v)∆α/2ϕ(v)dv =

∫
Dc

[ϕ(y)− ϕ(x)]ωx
D(dy) , x ∈ D , ϕ ∈ C∞

c (Rd). (16)

By considering ϕ supported away from D, and by (1) we conclude that on (D)c, ωx
D is

absolutely continuous with respect to the Lebesgue measure, and has density PD(x, y)
given by (2). This is the Ikeda-Watanabe formula [26]:

ωx
D(A) =

∫
A

PD(x, y)dy , if dist(A, D) > 0 . (17)
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If D′ ⊂ D is a Lipschitz domain (e.g. a ball) then ωx
D(∂D′) ≤ ωx

D′(∂D′) = 0 ([9]), hence

ωx
D(dy) = PD(x, y)dy on D′c provided x ∈ D ⊂ D′ and D′ is Lipschitz . (18)

The Green function of the ball is known explicitly:

GBr(x, v) = Bd,α |x− v|α−d

∫ w

0

sα/2−1

(s + 1)d/2
ds , x, v ∈ Br, (19)

where
w = (r2 − |x|2)(r2 − |v|2)/|x− v|2,

and Bd,α = Γ(d/2)/(2απd/2[Γ(α/2)]2), see [8], [37]. It is also known ([14], [18]) that

sBr(x) =
Cd,α

Ad,−α

(r2 − |x|2)α/2 , |x| ≤ r . (20)

For a nonnegative measure λ we define its Poisson integral on D:

PD[λ](x) =

∫
Dc

PD(x, y)λ(dy) , x ∈ D ,

compare (10). Furthermore we define

HD[λ] = PD[λ] + λ , (21)

as the function PD[λ] on D, and the measure λ restricted to Dc on Dc. We will regard λ
(on Dc) as the external values (or the “boundary condition”) of HD[λ].

If U ⊂ D, and v ∈ U c is such that GU(x, v) = 0 for x ∈ Rd, then by (13) we have

GD(x, v) =

∫
GD(w, v)ωx

U(dw) , x ∈ U . (22)

This, and (24) below may be considered a mean value property.
For nonempty open U ⊂ D we denote∫

HD[λ](dy) ωx
U(dy) =

∫
D\U

PD[λ](y)ωx
U(dy) +

∫
Dc

PU(x, y)λ(dy) , x ∈ U . (23)

Lemma 1 If U ⊂ D and λ ≥ 0 then

HD[λ](x) =

∫
HD[λ](dy) ωx

U(dy) , x ∈ U . (24)

Proof: Let x ∈ U , y ∈ Dc. By integrating (13) against ν(v, y)dv on Rd we get

HD[εy](x) = PD(x, y) = PU(x, y) +

∫
PD(z, y)ωx

U(dz) =

∫
HD[εy](dy) ωx

U(dy) . (25)

The case of general λ ≥ 0 follows from Fubini-Tonelli theorem. �
The next two lemmas are versions of Harnack inequality.
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Lemma 2 If λ ≥ 0 and x1, x2 ∈ Br ⊂ Bs ⊂ D then

PD[λ](x1) ≤
(

1 + r/s

1− r/s

)d−α/2

PD[λ](x2) . (26)

Proof: By (3) we have PBr(x1, z) ≤ (1 + r/s)d−α/2(1 − r/s)α/2−dPBr(x2, z) if |z| ≥ r.
Using (25), (18), and (3) we prove the result. �

Lemma 3 If x1, x2 ∈ D then there is cx1,x2 such that for every λ ≥ 0

HD[λ](x1) ≤ cx1,x2HD[λ](x2) . (27)

Proof: If x1, x2 ∈ Br ⊂ B2r ⊂ D for some r > 0 then we are done by Lemma 2 with
c = cx1,x2 depending only on d and α. Assume that B(x1, 2r) ⊂ D, B(x2, 2r) ⊂ D,
B(x1, 2r) ∩ B(x2, 2r) = ∅ for some r > 0, and consider (25) with U = B(x1, r). Let
y ∈ Dc. By (18) we obtain PD(x1, y) ≥

∫
B(x2,r)

cPD(x1, y)PBr(0, x− x1)dx. �
If K ⊂ D is compact and x1, x2 ∈ K then cx1,x2 in Harnack’s inequality above may be so
chosen to depend only on K, D, and α. This follows from the same proof. Note that D
may be disconnected.

Remark 1 If λ ≥ 0 and PD[λ](x) is finite (positive) for some x ∈ D then it is finite
(positive, resp.) for all x ∈ D. This follows from Lemma 3. Note that if (11) holds then
PD[λ] is finite and continuous on D, a consequence of (26) (see also the proof of Lemma 4
below).

The proof of the following well-known result is given for reader’s convenience.

Lemma 4 GD is positive and jointly continuous: D ×D 7→ (0,∞].

Proof: If B(z, s) ⊂ D, λ ≥ 0, and

f = HB(z,s)[λ] (28)

is finite on B(z, s) then by (26)

(1− |u|2/s2)d−α/2 ≤ f(z + u)

f(x)
≤ (1− |u|2/s2)α/2−d , |u| < s . (29)

This may be applied to the second term on the right of (13), where we use U = B(z, s)
with z = x and z = v, and symmetry. Note that for this U the first term on the right
of (13) is explicitly given by (19) and also positive on U × U . Thus GD(x, y) is jointly
continuous D ×D 7→ [0,∞] and, by Lemma 3, GD(x, y) > 0 on D ×D. �

For clarity we note that GD it is finite and locally uniformly continuous on D ×D \
{(x, x) : x ∈ D} (on D ×D if α > d = 1), see (19).

Scaling will be important in what follows. Let k > 0. We have∫
kU

ν(0, y)dy = k−α

∫
U

ν(0, y)dy .
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Similarly, if ϕk(x) = ϕ(x/k) and ϕ ∈ C∞
c (Rd) then

∆α/2ϕk(x) = k−α∆α/2ϕ(x/k) , x ∈ Rd .

By (12) and uniqueness of the Green function we see that

GkU(kx, kv) = kα−dGU(x, v) , x, v ∈ Rd , (30)

hence
skU(kx) = kαsU(x) , x ∈ Rd , (31)

and
PkD(kx, ky) = k−dPD(x, y) , x, y ∈ Rd . (32)

By (16) we also have that

ωkx
kD(kA) = ωx

D(A) , x ∈ Rd, A ⊂ Rd . (33)

Translation invariance is equally important but easier to observe; for example we
have GU+y(x + y, v + y) = GU(x, v). Both properties enable us to reduce many of the
considerations below to the context of the unit ball centered at the origin.

3 Factorization of Poisson kernel

We keep assuming that D is a domain. Note that the constants in the estimates below
are independent of D. When 0 < r ≤ 1 we denote Dr = D ∩ Br and D′

r = Bc ∪D \ Br.
Our first estimate is an extension of an observation made in [38, the proof of Lemma 3.1].

Lemma 5 For every p ∈ (0, 1) there is a constant Cd,α,p such that if D ⊂ B then

ωx
D(Bc) ≤ Cd,α,p sD(x) , x ∈ Dp .

Proof: Let 0 < p < 1. We choose a function ϕ ∈ C∞
c (Rd) such that 0 ≤ ϕ ≤ 1, ϕ(x) = 1

if |x| ≤ p, and ϕ(x) = 0 if |x| ≥ 1. Let x ∈ Dp. By (16) we have

ωx
D(Bc) =

∫
Bc

(ϕ(x)− ϕ(y))ωx
D(dy) ≤

∫
Dc

(ϕ(x)− ϕ(y))ωx
D(dy)

= −
∫

D

GD(x, y)∆α/2ϕ(y)dy .

It remains to observe that ∆α/2ϕ is bounded and the lemma follows. �
For x ∈ Rd, r > 0, and a nonnegative measure f on Rd, we let

Λx(f) =

∫
Rd

ν(x, y)f(dy) , and Λx,r(f) =

∫
B(x,r)c

ν(x, y)f(dy) .

Note that if k > 0 and fk is the measure defined by∫
ϕ(y)fk(dy) =

∫
ϕ(ky)f(dy) (34)

then
Λ0,kr(fk) = k−αΛ0,r(f) . (35)
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Lemma 6 Let 0 < p < 1. There is Cd,α,p such that if D ⊂ B and λ ≥ 0 then

HD[λ](x) ≤ Cd,α,p Λ0,p(HD[λ]) , x ∈ Dp . (36)

Proof: Let 0 < p < q < r ≤ 1 and x ∈ Dp. By (24),

HD[λ](x) =

∫
D′

r

HD[λ](dy)ωx
Dr

(dy) ≤
∫

D′
r

HD[λ](dy)ωx
Br

(dy) ,

and so Fubini-Tonelli theorem yields

HD[λ](x) ≤ 1

1− q

∫ 1

q

∫
D′

r

HD[λ](dy)ωx
Br

(dy)dr =

∫
D′

q

K(x, y)HD[λ](dy) ,

where, according to (3),

K(x, y) =
1

1− q

∫ 1∧|y|

q

PBr(x, y)dr =
Cd,α

1− q

∫ 1∧|y|

q

(
r2 − |x|2

|y|2 − r2

)α/2
1

|x− y|d
dr .

Here and below |y| ≥ q and r ≤ 1 ∧ |y|, which implies that

|x− y|
|y|

≥ q − p

q
,

|y|+ r

|y|
≥ 1 , and r2 − |x|2 ≤ 1 .

Thus

K(x, y) ≤
Cd,α,q/p

|y|d+α/2

∫ 1∧|y|

q

dr

(|y| − r)α/2
≤

Cd,α,q/p

|y|d+α
.

We conclude the proof by choosing, e.g., q = (1 + p)/2. �
The above regularization of PBr(x, y) (first applied in [9]) is a close analogue of volume

averages in classical potential theory.

Lemma 7 Let 0 < p < 1. There is Cd,α,p such that for f = HD[λ], λ ≥ 0, and D ⊂ B,

C−1
d,α,pΛ0,p(f)sD(x) ≤ f(x) ≤ Cd,α,pΛ0,p(f)sD(x) , x ∈ Dp . (37)

Furthermore, the lower bound for f is valid for all x ∈ D.

Proof: Let 0 < p < q < r < 1 and x ∈ Dp. By (24) we have that

f(x) =

∫
D′

r

f(y)ωx
Dq

(dy) +

∫
Dr\Dq

f(y)ωx
Dq

(dy) . (38)

If v ∈ Dq and y ∈ D′
r, then (r − q)/q ≤ |y − v|/|y| ≤ (r + q)/q. Hence (18) yields∫

D′
r

f(y)ωx
Dq

(dy) =

∫
D′

r

∫
Dq

GDq(x, v)ν(v, y)f(y)dvdy

� Cd,α,r,q sDq(x)

∫
D′

r

ν(0, y)f(y)dy . (39)
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The second integral of (38) is estimated by using Lemma 5, 6, and scaling (33, 31, 35):∫
Dr\Dq

f(y)ωx
Dq

(dy) ≤ ωx
Dq

(Bc
q) sup

Dr\Dq

f

≤ Cd,α,p/q,r/q sDq(x)

∫
D′

r

ν(0, y)f(dy) . (40)

Since f is nonnegative, (38), (39) and (40) yield:

f(x) � Cd,α,p,q,r sDq(x)

∫
D′

r

ν(0, y)f(dz) .

Clearly, sDq(x) ≤ sD(x). In view of (14) and Lemma 5 we also have that

sD(x) = sDq(x) +

∫
D\Dq

sD(z)ωx
Dq

(dz) ≤ sDq(x) + ωx
Dq

(Bc
q) sup

D
sD

≤ sDq(x)(1 + Cd,α,p,q sup
B

sB) = Cd,α,p,q sDq(x) .

Of course,
∫

D′
r
ν(0, y)f(y)dy ≤

∫
Bc

p
ν(0, y)f(y)dy. Lemma 6 yields that also∫

Bc
p

ν(0, y)f(y)dy ≤
∫

D′
r

ν(0, y)f(y)dy +
Cd,α|Dr|

pd+α
sup
Dr

f ≤ Cd,α,p,r

∫
D′

r

ν(0, y)f(y)dy .

This proves (37). Moreover, for any x ∈ D we have

f(x) =

∫
Bc

∫
D

GD(x, z)ν(z, y)f(y)dzdy ≥ Cd,α sD(x)

∫
Bc

ν(0, y)f(y)dy

≥ Cd,α,p sD(x)

∫
Bc

p

ν(0, y)f(y)dy . �

Remark 2 Scaling leaves (37) invariant. Indeed, let f = HD[λ], k > 0, and let fk be
defined by (34). By (33, 32) fk = HkD[λk], in particular fk(x) = f(x/k) on kD. By (35)
and (31) we have that Λ0,kp(fk)skD(x) = Λ0,p(f)sD(x/k), which proves our claim.

Remark 3 The constant Cd,α,p in (37) may be considered nondecreasing in p. Indeed,
if 0 < p1 < p2 < 1 and f ≤ Cd,α,p2Λ0,p2(f)sD on Dp2 then f ≤ Cd,α,p2Λ0,p1(f)sD on Dp1 .
Similarly, if C−1

d,α,p1
Λ0,p1(f)sD ≤ f on D then C−1

d,α,p1
Λ0,p2(f)sD ≤ f on D.

Proof of Theorem 1: Lemma 7 with p = 1/2 and λ = εyi
, i = 1, 2, yields

PD(x1, y1)PD(x2, y2) ≤ C2
d,α,1/2Λ0,1/2(HD[εy1 ])sD(x1)Λ0,1/2(HD[εy2 ])sD(x2)

≤ C4
d,α,1/2PD(x1, y2)PD(x2, y1) . �

We end this section with a simple corollary of Lemma 7, which generalizes Theorem 1
and states our uniform BHP in a more traditional form. Note that the constant in the
estimate does not depend on D.
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Corollary 1 Let G ⊂ Rd be open and let K ⊂ G be compact. There is a constant
C = Cd,α,G,K with the following property. If D ⊂ Rd is open and f, g are nonnegative
Poisson integrals on D ∩G equal to 0 in G \D, then

C−1f(y)

g(y)
≤ f(x)

g(x)
≤ C

f(y)

g(y)
, x, y ∈ D ∩K . (41)

Proof: Let p = 1/2. For each x ∈ K we take any ball B(x, rx) ⊂ G. The fam-
ily {B(x, p rx) : x ∈ K} is an open covering of K. We choose a finite sub-covering

{B(x1, p rx1), . . . , B(xn, p rxn)}. We let rj = rxj
, Bj = B(xj, rj), B̃j = B(xj, p rj),

R = diam K and r = min{r1, . . . , rn}. Let x ∈ D ∩ B̃i, y ∈ D ∩ B̃j and let f be a
nonnegative Poisson integral on G ∩ D and equal to 0 in G \ D. Applying Lemma 7
once in the first inequality below and twice in the third one, and using the inequality
|z − xj| ≤ R + |z − xi| ≤ R+r

r
|z − xi| in the second one, we obtain:

f(x)

sD∩Bi
(x)

≤ Cd,α,p

(∫
B̃c

i∩B̃c
j

ν(xi, z)f(z)dz +

∫
B̃c

i∩B̃j

ν(xi, z)f(z)dz

)

≤ Cd,α,p

(
Cd,α,r,R

∫
B̃c

j

ν(xj, z)f(z)dy + Cd,α,r

∫
D∩B̃j

f(z)dy

)

≤ Cd,α,p,r,R

(
f(y)

sD∩Bj
(y)

+ Λxj ,p rj
(f)

∫
D∩B̃j

sD∩Bj
(z)dz

)
.

But sD∩Bj
(z) ≤ sBj

(z), which does not exceed a constant dependent only on d, α, R, and,
again by Lemma 7, Λxj ,p rj

(f) ≤ Cd,α,p f(y)/sD∩Bj
(y). Therefore

f(x)

sD∩Bi
(x)

≤ Cd,α,p,r,R
f(y)

sD∩Bj
(y)

.

Corollary 1 follows. In fact, C in (41) depends only on d, α, diam G and dist(K, Gc).
�

Remark 4 Let D ⊂ Rd be open, U ⊂ D bounded, f = HD[λ], supp λ = A 6= ∅ and
dist(A, D) > 0. Then if f is finite at one point x0 ∈ U then f is bounded on U . This
follows from Corollary 1 applied to K = U , G an open set such that K ⊂ G ⊂ Ac and
g = PD∩G(1A(x)dx).

Remark 5 Let D ⊂ Rd be an open Greenian set, x0 ∈ D a fixed point and f(x) =
GD(x, x0). It is well known that the set {x ∈ ∂D : f(x) > 0} is polar so it is of Lebesgue
measure zero. Let G be an open bounded Lipschitz domain, D∩G 6= ∅, and assume that
x0 /∈ G. Then ωx

G(∂G) = 0 for x ∈ G. It follows from the above and (22) that

f(x) =

∫
D\G

f(w)PD∩G(x, w) dw, x ∈ D ∩G,

so f is a Poisson integral on D ∩G.
Therefore one may apply Corollary 1 to D, G and f as above. In particular, one may

also use Remark 4 to function f . It follows that for arbitrary r > 0 the function f is
bounded on any bounded subset of Bc(x0, r) ∩D.
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4 Existence of limits

For a positive function q on a nonempty set U we define its relative oscillation:

ROU q = ROx∈U q(x) =
supx∈U q(x)

infx∈U q(x)
.

For notational convenience, we put ROU q = 1 if U = ∅.
The main result of this section addresses the asymptotics of Poisson integrals at x = 0.

(26) gives a motivation for (42), but here x = 0 may be, e.g., a boundary point of D.

Lemma 8 For every η > 0 there exists r > 0 such that

ROD∩Br

HD[λ1]

HD[λ2]
≤ 1 + η (42)

for all open D ⊂ B and nonzero nonnegative measures λ1, λ2 on Bc satisfying (11).

Proof: Let c denote the constant Cd,α,1/2 of Lemma 7. Recall from the proof of Theo-
rem 1 that (4) holds with Cd,α = c4. Thus, (42) holds with 1 + ε replaced by c4. We will
show that the left hand side of (42) is self-improving when r → 0+. This will be done
under each of the two complementary assumptions: (44) and (48) below. First, however,
we need some preparation. For 0 < p < q < 1/2 and a measure f we let Dp,q = Dq \Dp,

Λx,p,q(f) =

∫
Dp,q

ν(x, y)f(dy) , fp,q = HDp [1Dp,qf ] , and f̃p,q = HDp [1D′
q
f ] .

What follows will be valid with i = 1 and with i = 2. Let fi = HD[λi]. By (24) we have

fi = fp,q
i + f̃p,q

i . For r ∈ (0, 1/2] we denote mr = infDr(f1/f2) and Mr = supDr
(f1/f2).

As we noted above, Mr ≤ c4mr. Let ε > 0.
Let q ∈ (0, 1/2] and let p = p(q) ∈ (0, q/2) (depending on p and ε) be given by

(q + 2p)/(q − 2p) = 1 + ε , (43)

so that if z ∈ D2p and y ∈ D′
q then (1+ ε)−d−αν(0, y) ≤ ν(z, y) ≤ (1+ ε)d+αν(0, y). Thus,

for x ∈ D2p we have

f̃ 2p,q
i (x) =

∫
D′

q

∫
D2p

GD2p(x, z)ν(z, y)fi(y)dzdy ≤ (1 + ε)d+αΛ0,q(fi)sD2p(x) ,

and
f̃ 2p,q

i (x) ≥ (1 + ε)−d−αΛ0,q(fi)sD2p(x) .

We will now examine consequences of the following assumption:

Λ0,p,q(fi) ≤ ε Λ0,q(fi) , i = 1, 2 . (44)

If (44) holds then using the full statement of Lemma 7, and Remark 2 we obtain

f 2p,q
i (x) ≤ c sD2p(x)Λ0,p(f

2p,q
i ) ≤ c sD2p(x)Λ0,p,q(fi) ≤ c ε sD2p(x)Λ0,q(fi) , x ∈ Dp .

11



Recall that fi = f 2p,q
i + f̃ 2p,q

i . Thus, if (44) holds then we have

(1 + ε)−d−αΛ0,q(f1)

(c ε + (1 + ε)d+α)Λ0,q(f2)
≤ f1(x)

f2(x)
≤ (c ε + (1 + ε)d+α)Λ0,q(f1)

(1 + ε)−d−αΛ0,q(f2)
, x ∈ Dp , (45)

and, finally,

RODp

f1

f2

≤ (c ε + (1 + ε)d+α)2(1 + ε)2d+2α . (46)

We are satisfied with (46) for the moment. We consider 0 < p′ < q′/4 < q′ < 1/2,

g = f 2p′,q′

1 − mq′f
2p′,q′

2 , and h = Mq′f
2p′,q′

2 − f 2p′,q′

1 . Note that on D2p′ both g and h are
Poisson integrals of nonnegative measures. By Theorem 1,

sup
Dp′

f 2p′,q′

1

f 2p′,q′

2

−mq′ = sup
Dp′

g

f 2p′,q′

2

≤ c4 inf
Dp′

g

f 2p′,q′

2

= c4

(
inf
Dp′

f 2p′,q′

1

f 2p′,q′

2

−mq′

)
,

and

Mq′ − inf
Dp′

f 2p′,q′

1

f 2p′,q′

2

= sup
Dp′

h

f 2p′,q′

2

≤ c4 inf
Dp′

h

f 2p′,q′

2

= c4

(
Mq′ − sup

Dp′

f 2p′,q′

1

f 2p′,q′

2

)
,

hence

(c4 + 1)

(
sup
Dp′

f 2p′,q′

1

f 2p′,q′

2

− inf
Dp′

f 2p′,q′

1

f 2p′,q′

2

)
≤ (c4 − 1)(Mq′ −mq′) . (47)

We will now examine consequences of the following assumption:

Λ0,q′(fi) ≤ εΛ0,2p′,q′(fi) . (48)

By Lemma 7 and Remark 2 applied to D2p′ ⊂ Bq′ for x ∈ Dp′ we have

f̃ 2p′,q′

i (x) ≤ c sD2p′
(x)Λ0,2p′(f̃

2p′,q′

i ) = c sD2p′
(x)Λ0,q′/2(f̃

2p′,q′

i ) ≤ c sD2p′
(x)Λ0,q′(fi) .

Hence, by our assumption (48), Lemma 7 and Remark 2 applied to Dp′ ⊂ B2p′

f̃ 2p′,q′

i (x) ≤ c ε sD2p′
(x)Λ0,2p′,q′(fi) ≤ c ε sD2p′

(x)Λ0,p′(f
2p′,q′

i ) ≤ c2ε f 2p′,q′

i (x) , x ∈ Dp′ .

Since fi = f 2p′,q′

i + f̃ 2p′,q′

i , this and (47) yield

(c4 + 1)
(
Mp′/(1 + c2ε)−mp′(1 + c2ε)

)
≤ (c4 − 1)(Mq′ −mq′) .

Note that mp′ ≥ mq′ . Dividing by mq′ finally gives

RODp′

f1

f2

≤ (1 + c2ε)2 + (1 + c2ε)
c4 − 1

c4 + 1

(
RODq′

f1

f2

− 1

)
. (49)

We now come to the conclusion of our considerations. Let η > 0. If ε is small enough
then the right side of (46) is smaller that 1 + η and right side of (49) does not exceed
ϕ(RODq′

(f1/f2)), where

ϕ(t) = 1 +
η

2
+

c4

c4 + 1
(t− 1) .

12



Let ϕ1 = ϕ, ϕl+1 = ϕ(ϕl), l = 1, 2, . . .. Observe that ϕ(t) = t for t = 1 + η(c4 + 1)/2,
and ϕ(t) < t for t > 1 + η(c4 + 1)/2. Thus the l-fold compositions ϕl(c4) converge to
1 + η(c4 + 1)/2 as l →∞. In what follows let l be such that

ϕl(c4) < 1 + η(c4 + 1) .

Let k be the least integer such that k − 1 > c2/ε2. We denote n = lk. Let q0 = 1/2,
qj+1 = p(qj) for j = 0, . . . , n− 1 (see (43)), and r = qn. If for any j < n, (44) holds with
q = qj and p = p(q) = qj+1, then

RODr

f1

f2

≤ RODqj+1

f1

f2

≤ 1 + η ,

and we are done. Otherwise for j = 0, . . . , n − 1, we have Λ0,qj+1,qj
(fi) > εΛ0,qj

(fi) for
i = 1 or i = 2. Note that by Lemma 7

c−1 fi(x)

Λ0,qj
(fi)

≤ sD2qj
(x) ≤ c

f3−i(x)

Λ0,qj
(f3−i)

, x ∈ Dqj+1,qj
.

Hence Λ0,qj+1,qj
(fi) > c−2ε Λ0,qj

(fi) for both i = 1, 2. Let p′ = q(j+1)k and q′ = qjk for
some j, 0 ≤ j < l. Then:

Λ0,2p′,q′(fi) ≥ Λ0,q(j+1)k−1,qjk
(fi) ≥ (k − 1)c−2ε Λ0,q′(fi) ≥ ε−1Λ0,q′(fi) ,

that is (48) is satisfied. We conclude that (49) holds. Recall that ROD1/2
(f1/f2) ≤ c4. By

the definition of l and monotonicity of ϕ

RODqlk

f1

f2

≤ ϕ

(
RODq(l−1)k

f1

f2

)
≤ . . . ≤ ϕl

(
RODq0

f1

f2

)
≤ 1 + η(c4 + 1) ,

i.e. RODr(f1/f2) ≤ 1 + η(c4 + 1). Since η > 0 was arbitrary, the proof is complete. �
Proof of Theorem 2: For bounded D, by (2) and (5) we have that sD(x) =
lim|z|→∞ PD(x, z)/ν(0, z). We apply Lemma 8 to λ1 = εy and λ2 = εz. It follows that
RODr f/sD → 1 as r → 0+, which is equivalent to the convergence of f/sD to a finite,
positive limit. �

As an addition to Theorem 2 we note that if 0 is thin for D, then we have:

lim
D3x→0

f1(x)

f2(x)
=

∫
ν(0, y)f1(y)dy∫
ν(0, y)f2(y)dy

and lim
D3x→0

f1(x)

sD(x)
=

∫
ν(0, y)f1(y)dy∫

ν(0, y)sD(y)dy + 1
(50)

for every nonnegative Poisson integrals f1, f2 on D. Indeed, by Theorem 1 the integrals∫
ν(0, y)fi(y)dy are finite. Hence, for every ε > 0 we can find q > 0 such that (44) is

satisfied with p = q/2. It follows that (45) holds. Since ε was arbitrary, the first equality
is proved. The second one follows easily by using sD(x) = lim|z|→∞ PD(x, z)/ν(0, z).

5 Harmonicity

Let f be a nonnegative continuous function on D and a nonnegative measure on Dc.
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Definition 1 We say that f is α-harmonic in D if for every open U precompact in D

f(x) =

∫
f(y)ωx

U(dy) , x ∈ U , (51)

where ∫
f(y)ωx

U(dy) =

∫
D\U

f(y)ωx
U(dy) +

∫
Dc

PU(x, y)f(dy) .

The definition slightly extends the usual definition of a harmonic function (see, e.g., [9])
by allowing measure values on Dc. This is natural in view of the definition of HD[λ],
see (21), (23), and the next paragraph. The letter H in (21) suggests “hybrid harmonic
function”. The case of genuine functions f is of course included by letting f(dy) = f(y)dy.

Formula (12) yields that the function x 7→ GD(x, y) is α-harmonic on D \ {y}. Also,
x 7→ ωx

D(A) is α-harmonic on D for every set A by (15). Lastly, it follows from (2) and
(13) that f = PD(·, y) + εy is α-harmonic in D. If a measure λ is nonnegative and the
hybrid HD[λ] is finite on D then by Fubini-Tonelli and Remark 1 it is α-harmonic in D.

By the same token, x 7→ PD(x, y) is not α-harmonic in D. To be absolutely clear on
this, we consider D = B. We note that the function x 7→ PB(x, y) vanishes on Bc, and
has a maximum inside B. Thus the mean-value property (51) cannot hold.

We note that for (nonnegative) f which is α-harmonic on (nonempty open) D by (3)
and (18) we necessarily have that∫

Rd

(1 + |y|)−d−αf(dy) < ∞ . (52)

If f is a (genuine) function on Rd continuous on D then (51) is equivalent to

∆α/2f(x) = 0 , x ∈ D . (53)

The result is given in [13], and its proof can be extended without difficulty to the present
more general setting. However, we will not use (53) in the sequel, and we leave the
verification to the interested reader. We also refer the reader to [16] to see the limitations
of (53) in defining harmonic functions for other operators as opposed to (51).

To further deal with U touching ∂D or f charging ∂D in (51) we need auxiliary
considerations. Let D(r) be the set of regular boundary points for D (see Section 2). It is
known that ωx

U(∂D\D(r)) = 0 and |∂D\D(r)| = 0 for every open U and x ∈ U ([32]). For
open U ⊂ D suppose that f has a (necessarily unique) continuous extension to U ∪ U (r)

and does not charge ∂U \ U (r). For a set A we then define∫
A

f(y)ωx
U(dy) =

∫
A∩U(r)

f(y)ωx
U(dy) +

∫
A\U

PU(x, y)f(dy) .

Here in the first integral on the right we employ the continuous extension of f . We note
that if f is a genuine function then the second integral equals

∫
A\U f(y)ωx

U(dy) by (17).

Lemma 9 Let f be α-harmonic in bounded D. Suppose that f has a density function on
∂D which continuously extends f to a bounded function on D ∪D(r). Then

f(x) =

∫
Dc

f(y)ωx
D(dy) , x ∈ D . (54)
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Proof: Let Dn be an increasing sequence of open sets precompact in D such that⋃
Dn = D. Recall that PDn(x, y) ↗ PD(x, y) and ωx

Dn
→ ωx

D weakly as n →∞. Thus,

lim
n→∞

∫
D

c

f(y)ωx
Dn

(dy) = lim
n→∞

∫
D

c

PDn(x, y)f(dy) =

∫
D

c

PD(x, y)f(dy) =

∫
D

c

f(y)ωx
D(dy) ,

and, since f is bounded and continuous on D except on a set of zero harmonic measure,

lim
n→∞

∫
D

f(y)ωx
Dn

(dy) = lim
n→∞

∫
D∪D(r)

f(y)ωx
Dn

(dy) =

∫
D∪D(r)

f(y)ωx
D(dy) =

∫
D

f(y)ωx
D(dy) .

This proves (54). �
We note in passing that (54) implies α-harmonicity through (15). Generally, the

reverse implication is not true as we will see is the case for the Martin kernel with the
pole at a thick boundary point. (54) was coined regular α-harmonicity in [9] and is a
useful concept in boundary potential theory, see also [17], [10].

Lemma 10 Suppose that 0 ≤ g ≤ f on Rd, f = 0 on Dc, and f, g are α-harmonic on
D. If U ⊂ D and f(x) =

∫
Uc f(y)ωx

U(dy), x ∈ U , then g(x) =
∫

Uc g(y)ωx
U(dy), x ∈ U .

Proof: Here f and g are genuine functions vanishing on Dc. Let Dn be an increasing
sequence of open sets precompact in D such that D =

⋃
Dn. Let Un = U ∩Dn. Then

0 ≤
∫

U\Un

g(y)ωx
Un

(dy) ≤
∫

U\Un

f(y)ωx
Un

(dy) = f(x)−
∫

D\U
f(y)ωx

Un
(dy) , x ∈ Un .

By weak convergence of harmonic measures and disjointness of D \ U and
⋂

U \ Un, we
conclude that ωx

Un
increase to ωx

U on D \ U . Hence, by monotone convergence, the right
side tends to 0 when n →∞. Thus

g(x) = lim
n→∞

∫
D\U

g(y)ωx
Un

(dy) =

∫
D\U

g(y)ωx
U(dy) . �

Lemma 11 Suppose that D1 and D2 are bounded open sets such that ∂(D1 \ D2) and
∂(D2 \ D1) are disjoint. Let f be a nonnegative measure with bounded density function
on closure of D = D1 ∪ D2 which satisfies f(x) =

∫
Dc

i
f(y)ωx

Di
(dy) for x ∈ Di, i = 1, 2.

Then f(x) =
∫

Dc f(y)ωx
D(dy) for x ∈ D.

Proof: Let µx
0 = εx and µx

n+1 =
∫

µy
nω

x
Di

(dy) with i = 1 for n even and i = 2 for odd n.
By our assumption dist(D1 \D2, D2 \D1) > 0 and so there is c < 1 such that

ωx
Di

(D) < c , x ∈ Di \Dj , i 6= j .

Hence µn(D) tends to 0. On the other hand, µn is increasing on Dc and the limit measure
satisfies (13), hence it equals ωx

D. The result follows. �
Lemma 11 applies, e.g., if D1, D2 are overlapping finite open intervals on the line.

15



6 Martin kernel

We note that for open Greenian D,∫
Rd

GD(x, v)(1 + |v|)−d−αdv < ∞ , x ∈ Rd . (55)

This follows from (52). Thus, by BHP, (7) is equivalent to∫
Rd

G(x, v)ν(0, v)dv < ∞ , for some (all) x ∈ D . (56)

Proof of Theorem 3: Let D be open and Greenian, and let y ∈ ∂D. By translation
invariance, to study MD(·, y) we may assume with no loss of generality, that y = 0.

Let x ∈ D, ρ = 1 ∧ (|x| ∧ |x0|)/2, and Dρ = D ∩ B(0, ρ). By Harnack inequality in
the first variable, GD(x, v)/GD(x0, v) is bounded from above and below for v ∈ Dρ. Also,
GD(x, v) = PDρ [G(x0, u)du](v), GD(x0, v) = PDρ [G(x, u)du](v) for v ∈ Dρ. Lemma 8,
applied to Dρ, yields that MD(x, 0) is well-defined by (9). Clearly, 0 < MD(x, 0) < ∞.

Denote M(x) = MD(x, 0). If D is thin at 0, then by (50) we have

M(x) =

∫
D

ν(0, y)GD(x, y)dy/

∫
D

ν(0, y)GD(x0, y)dy = PD(x, 0)/PD(x0, 0) ,

in particular M(x) is not α-harmonic on D. However, if D is thick at 0 then

M(x) =

∫
D\U

M(y)ωx
U(dy) , x ∈ U , (57)

for every U = D \ BR with R > 0. Indeed, (57) is equivalent to uniform integrability of
GD(y, z)/GD(x0, z) with respect to ωx

U(dy) on the (bounded) set D\U as D 3 z → 0. Let
0 < r < min(R/4, 1, |x0|/4) and z0 ∈ Dr be a fixed point. For y ∈ DR \D3r and z ∈ Dr,
Remark 5 yields that

GD(y, z)

GD(x0, z)
≤ Cd,α,r

GD(y, z0)

GD(x0, z0)
.

Again by Remark 5 we obtain that supy∈DR\D3r
GD(y, z0) < ∞. Thus we only need to

estimate
∫

D3r
GD(z, y)ωx

U(dy)/GD(x0, z) for z ∈ Dr.
Since the density function (Poisson kernel) of ωx

U is bounded on D3R/4, we have∫
D3r

GD(y, z)ωx
U(dy) ≤ Cd,α,D,R

∫
D3r

GD(y, z)dy . (58)

On the other hand, ωx0

D\D3r
is absolutely continuous on D3r with respect to the Lebesgue

measure, and has PD\D3r
(x0, ·) as density function. Thus

GD(x0, z) =

∫
D3r

GD(y, z)PD\D3r
(x0, y)dy

=

∫
D3r

∫
D\D3r

GD(y, z)GD\D3r
(x0, ζ)ν(ζ, y)dζdy

≥ 2−d−α

(∫
D3r

GD(y, z)dy

)(∫
D\D3r

GD\D3r
(x0, ζ)ν(ζ, 0)dζ

)
. (59)
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The last integral becomes arbitrarily large when r is small enough. This is because∫
D

GD(x0, ζ)ν(ζ, 0)dζ = ∞, D is thick at 0, and GD(x0, ·) ≈ sD(·) at 0 by Lemma 7.
Combining this, (59), and (58), we obtain the uniform integrability, and (57). In fact,

(15) yields (57) for every open U ⊂ D provided 0 /∈ U . In particular, M is a (genuine)
function α-harmonic on D. Regarding a remark in Section 5 we note that f = M violates
(54) because M vanishes on Dc.

We now turn to the Martin kernel with the pole at infinity. Let x ∈ D. If D = Rd and
Rd is Greenian, or α < d, then MD(x,∞) = lim|v|→∞ |v−x|α−d/|v−x0|α−d = 1, sD ≡ ∞,
and we are done. Without loosing generality we may suppose in what follows that D is
a proper unbounded (Greenian) subset of Rd, and 0 ∈ Dc. Consider the inversion with
respect to the unit sphere:

Tx =
1

|x|2
x , x 6= 0 .

Inversion is often used to reduce potential theoretic problems at infinity to those at 0
([17]). In particular, the set TD = {Tx : x ∈ D} is also Greenian and

GD(x, v) = |x|α−d|v|α−dGTD(Tx, Tv) , x, v 6= 0 . (60)

We obtain

MD(x,∞) = lim
D3v→∞

|x|α−d|v|α−dGTD(Tx, Tv)

|x0|α−d|v|α−dGTD(Tx0, T v)
=

|x|α−d

|x0|α−d
MTD(Tx, 0) . (61)

The latter is a constant multiple of the Kelvin transform (see [17]) of the Martin kernel
of TD with the pole at 0 and the reference point at Tx0. The existence of MD(x,∞)
defined by (9) is proved. Also, 0 < MD(x,∞) < ∞. By [17], MD(x,∞) is α-harmonic in
D if and only if MTD(x, 0) is α-harmonic in TD. But D is thick at infinity if and only if
TD is thick at 0. Indeed, by (60) and a change of variable v = Ty (with Jacobian |y|−2d),∫

GTD(Tx, y)ν(0, y)dy = Ad,−α|x|d−α

∫
GD(x, Ty)|y|−2ddy = Ad,−α|x|d−αsD(x) . (62)

Thus α-harmonicity of MD(x,∞) is equivalent to thickness of D at infinity, see (56). �
We let

MD(x, y) =
GD(x, y)

GD(x0, y)
, x, y ∈ D , (63)

so that MD(x, y) is now defined for all x ∈ D and y ∈ D∗. Recall that Br = B(0, r).

Lemma 12 For every ρ > 0 and η > 0 there is r > 0 such that for every Greenian D

ROy∈D∩Br
MD(x, y) ≤ 1 + η , if x, x0 ∈ D \Bρ , (64)

ROy∈D∗\B1/r
MD(x, y) ≤ 1 + η , if x, x0 ∈ D ∩B1/ρ . (65)

The Martin kernel MD(x, y) is jointly continuous: D ×D∗ \ {(x0, x0)} 7→ [0,∞].
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Proof: Let ρ > 0 and x, x0 ∈ D \Bρ. We note that if r > ρ then by (9)

sup
y∈D\Bρ

MD(x, y) = sup
y∈D\Bρ

GD(x, y)

GD(x0, y)
, inf

y∈D\Bρ

MD(x, y) = inf
y∈D\Bρ

GD(x, y)

GD(x0, y)
,

hence ROy∈D∗\B1/r
MD(x, y) = ROy∈D\B1/r

MD(x, y). As functions of y, GD(x, y) and

GD(x0, y) are nonnegative Poisson integrals on D ∩ Bρ of measures on Bc
ρ. Thus (64) is

an immediate consequence of Lemma 8 and scaling. To prove (65), as in the proof of
Theorem 3 we may assume that 0 ∈ Dc, and then (61) reduces (65) to (64) for TD.

By Lemma 4, MD given by (63) is jointly continuous D×D \ {(x0, x0)} 7→ [0,∞]. We
consider the remaining case: D ×D∗ 3 (x′, y′) → (x, y) ∈ D × ∂D∗. We have

MD(x′, y′)

MD(x, y)
=

MD(x′, y′)

MD(x, y′)
· MD(x, y′)

MD(x, y)
.

Here the second factor on the right converges to 1 by (64) or (65). We will verify uniform
continuity of the first factor at x′ = x. If B(x, s) ⊂ D, and y′ ∈ B(x, s)c then by (57) and
(25) we see that f = MD(·, y′) + cεy′ satisfies (28). Here c = 1/PD(x0, y

′) if y′ ∈ Dc and
D is thin at y′, and c = 0 otherwise. The uniform continuity follows from (29) as in the
proof of Lemma 4. Thus MD(x′, y′)/MD(x, y) → 1. �

We remark that the section does not essentially depend on Section 5. Even the notion
of harmonicity in the statement of Theorem 3 might be replaced by (57). Thus, the kernel
functions GD, PD, and MD, may be studied without this notion.

7 Structure of nonnegative harmonic functions

Lemma 13 If f ≥ 0 and f is α-harmonic measure on domain D, then there is a unique
function fs α-harmonic in D such that fs ≥ 0 on Rd, fs = 0 on Dc, and f = HD[f ] + fs.

Proof: Let Dn be an increasing sequence of open precompact subsets of D such that⋃∞
n=1 Dn = D. By (2), monotone convergence of GDn to GD, α-harmonicity of f , and

(17), we have

HD[f ](x) = lim
n→∞

∫
Dc

∫
D

GDn(x, z)ν(z, y)dzf(dy) ≤ f(x) , x ∈ D .

Let fs = f −HD[f ]. Since fs = 0 as measure on Dc, we may and will assume that it is a
genuine function on Rd: fs(x) = 0, x ∈ Dc. The stated properties easily follow. �

By Fatou’s lemma, the function x 7→ Λx(GD(x0, ·)) is lower semicontinuous. Hence
∂MD = {x ∈ ∂D : Λx(GD(x0, ·)) = ∞} is Borel measurable, and in fact of type Gδ.

Lemma 14 Let D be Greenian and let µ ≥ 0 be a finite measure on ∂MD. Then

f(x) =

∫
∂MD

MD(x, y)µ(dy) , x ∈ Rd (66)

is α-harmonic on D and vanishes on Dc. Conversely, if function f ≥ 0 is α-harmonic on
D and f = 0 on Dc then there is a unique finite measure µ ≥ 0 on ∂MD satisfying (66).
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Proof: It is a straightforward consequence of Theorem 3 that f given by (66) is α-
harmonic in D and vanishes on Dc. We will write f = MD[µ].

Let f be a nonnegative function α-harmonic in D such that f = 0 on Dc. Let Dn

denote an increasing sequence of open sets precompact in D such that
⋃∞

n=1 Dn = D. For
notational convenience we will also assume that ωx

Dn
(∂Dn) = 0 for x ∈ Dn (this holds for

example if Dn are Lipschitz domains). By (18) for x ∈ Dn we then have

f(x) =

∫
D\Dn

PDn(x, y)f(y)dy =

∫
Dn

MDn(x, v)

(
GDn(x0, v)

∫
D\Dn

ν(v, y)f(y)dy

)
dv .

Let µn(dv) =
(
GDn(x0, v)

∫
D\Dn

ν(v, y)f(y)dy
)

dv. Since µn(D) = f(x0) < ∞, by con-

sidering a subsequence we may assume that µn weakly converge to a finite nonnegative
measure µ on D∗. We claim that µ is supported in ∂D∗. Indeed, if n > k, v ∈ Dk,
y ∈ D \Dn, then ν(v, y) ≤ Ck and GDn(x0, v) ≤ GD(x0, v). Hence

µn(Dk) ≤ Ck

(∫
Dk

GD(x0, v)dv

)(∫
D\Dn

f(y)(1 + |y|)−d−αdy

)
→ 0

as n →∞, see (52). This proves that µ(Dk) = 0 and so µ is a measure on ∂D∗.
Let ε > 0 and x ∈ D. By Lemma 12 for every y ∈ ∂D∗ its neighborhood, Vy, exists

such that
ROVy MU(x, ·) ≤ 1 + ε ,

with U = D and U = Dn, n = 1, . . .. From these, one selects a finite family {Vj, j =
1, . . . ,m} such that V = V1 ∪ ...∪ Vm ⊃ ∂D∗. For j = 1, . . . ,m, let zj ∈ Vj ∩D. Let k be
so large that for n > k we have zj ∈ Dn, and

(1 + ε)−1 ≤ MD(x, zj)

MDn(x, zj)
≤ 1 + ε , j = 1, . . . ,m .

If v ∈ Vj ∩Dn for some j then

(1 + ε)−3 ≤ MD(v)

MD(zj)
· MD(zj)

MDn(zj)
· MDn(zj)

MDn(v)
≤ (1 + ε)3 .

Therefore

(1 + ε)−3 ≤
∫

D∩V
MD(x, y)µn(dy)∫

D∩V
MDn(x, y)µn(dy)

≤ (1 + ε)3 , n ≥ k .

By letting n →∞ we obtain

(1 + ε)−3 ≤
∫

∂D
MD(x, y)µ(dy)

f(x)
≤ (1 + ε)3 ,

which yields (66).
We will prove that µ is concentrated on ∂MD. Let U be open and precompact in D

and let x ∈ U . By Theorem 3 and (25), if y ∈ ∂D∗, then MD(x, y) ≥
∫

D\B MD(z, y)ωx
U(dz)

and equality holds if and only if y ∈ ∂MD. By Fubini’s theorem

0 = f(x)−
∫

D\U
f(z)ωx

U(dz) =

∫
∂D

(
MD(x, y)−

∫
D\U

MD(z, y)ωx
B(dz)

)
µ(dy) ,
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hence µ(∂D∗ \ ∂MD) = 0.
We will prove the uniqueness of µ in the representation (66). We first consider f =

MD[εy0 ] = MD(·, y0), where y0 ∈ ∂MD. To simplify notation, we assume as we may that
y0 = 0 (we use translation invariance if 0 6= y0 ∈ Rd and inversion if y0 = ∞).

Let Dr = D ∩ Br, D′
r = D \ Br. Suppose that f satisfies (66) for a nonnegative

measure µ on ∂MD. Let r > 0 and g(x) =
∫
|y|>3r

MD(x, y)µ(dy). Considering y ∈ ∂DM

such that |y| > 3r, by (57) we get

g(x) =

∫
D\D2r

g(z)ωx
D2r

(dz) , x ∈ D2r.

On the other hand, we may apply Lemma 10 to f , g, and D′
r to verify that

g(x) =

∫
D\D′

r

g(z)ωx
D′

r
(dz) , x ∈ D′

r.

Lemma 11 yields g(x) =
∫

Dc g(z)ωx
D(dz) = 0, that is, µ = 0 on ∂DM ∩{|y| > 3r}. In par-

ticular, the measures µn corresponding to f = MD(·, y0) weakly converge to εy0 . Fubini’s
theorem and dominated convergence yield that for general f = MD[µ] the measures µn

corresponding to f weakly converge to µ. Since µn are determined by f , so is µ. �
We note that if f is α-harmonic in D and 0 ≤ f ≤ MD(·, y0) then the proof of

Lemma 14 yields f = c MD(·, y0) for some c ∈ [0, 1]. Thus, MD(·, y0) is minimal harmonic
i.e. an extremal point of the class of nonnegative functions f (or hybrids) α-harmonic on
D, such that f(x0) = 1. The same is true of (PD(·, y) + εy)/PD(x0, y), provided y ∈ Dc is
such that PD(x0, y) < ∞, because εy already determines the hybrid. We note, however,
that our proof does not invoke Choquet’s theorem. Instead it relies on (9) and Lemma 8.
Proof of Theorem 4: The theorem collects results of Lemma 13 and 14. �

Noteworthy, if D is thin at infinity then M(·,∞) = sD is not α-harmonic in D, and
the point at infinity is not charged by the measure µ in the representation (66).

8 Miscelanea

Consider f(x) = ωx
D(∂MD), x ∈ Rd. By Lemma 13,∫

∂MD

PD(x, y)dy ≤ f(x) ≤ 1 , x ∈ D .

Since PD(x, y) = ∞ for y ∈ ∂MD, we conclude that |∂MD| = 0.
We will now strengthen the result of Lemma 1 and (18).

Proposition 1 For Greenian D ⊂ Rd, and x ∈ D, the harmonic measure ωx
D is abso-

lutely continuous on Dc\∂MD with respect to the Lebesgue measure, with density PD(x, ·).

Proof: Let K ⊂ Dc \ ∂MD be compact and let f(x) = ωx
D(K) − PD[1K ](x) ≥ 0. We

will verify that f = 0. By Theorem 4, f(x) =
∫

∂MD
MD(x, y)µ(dy) for some nonnegative
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finite µ on ∂MD. Let L ⊂ ∂MD be compact and let g(x) =
∫

L
MD(x, y)µ(dx). It suffices

to prove that g = 0. We let

U = {x ∈ D : 2 dist(x, K) ≤ dist(x, L)} , V = {x ∈ D : 2 dist(x, L) ≤ dist(x, K)} .

Observe that by (57), g(x) =
∫

D\U g(y)ωx
U(dy) for x ∈ U . On the other hand, Lemma 10

applied to ωx
D(K), g, and V ⊂ D yields g(x) =

∫
D\V g(y)ωx

V (dy) for x ∈ V . Hence we

may apply Lemma 11 to conclude that g(x) =
∫

Dc g(y)ωx
D(dy) = 0. �

In particular, for any f = HD[λ] with nonnegative λ on Dc satisfying (11) and abso-
lutely continuous with respect to the Lebesgue measure, we have

f(x) =

∫
Dc

f(y)ωx
D(dy) .

This, however, requires a convention that f(y) = 0 for y ∈ ∂MD on the right hand side,
and should be used with caution.

We note that there are domains D for which the part of the harmonic measure, which is
singular with respect to the Lebesgue measure (i.e. ωx

D on ∂MD) is positive. Indeed, such
is the complement of every closed non-polar set of zero Lebesgue measure, for example,
the complement of a point on the line if 1 < α < 2, see [36].

Lemma 15 Every nonnegative f harmonic on non-Greenian D is constant on D.

Proof: If α < d then GD is majorized by the Riesz kernel [32]. For α ≥ d = 1, by
[36], if D is non-Greenian then Dc is polar. In this case, if x, y ∈ D and 0 < r <
min(dist(y, Dc), |y − x|), then by recurrence (see [36] for the definition) for every ε > 0
there is an open precompact B ⊂ D such that x ∈ B and ωx

B\B(y,r)
(B(y, r)) > 1 − ε.

Using small r, and continuity of f at y we obtain f(x) ≥ f(y), hence f is constant on D.
�

We will give examples of thin and thick boundary points. Let d ≥ 2 and let f :
(0, 1) → (0,∞) be any bounded increasing function. We define a thorn Df by (cf. [18]):

Df = {(x1, . . . , xd) ∈ Rd : 0 < x1 < 1, |(x2, . . . , xd)| < f(x1)} .

Proposition 2 The origin is thin for Df if and only if
∫ 1

0
t−d−αf(t)d+α−1dt < ∞.

Proof: We denote the integral by If . Let g(t) = 1
2
(f(t/2)∧ t). Observe that for x ∈ Dg

we have B(x, g(x1)) ⊂ Df . Hence:

sDf
(x) ≥ sB(x,g(x1))(x) = Cd,α(g(t))α.

If If = ∞, then Ig = ∞ too, and so Λ0(sDf
) = ∞.

Assume now that If is finite. We may assume that f(t) ≤ |t|. Let Df,r = Df ∩ Br.
We have:

sDf
(x) = sDf,4r

(x) +

∫
Df\Df,4r

sDf
(y)ωx

Df,4r
(dy).
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The latter component regarded as a function of x is a Poisson integral on Df,4r and so in
view of Lemma 7:

sDf
(x) ≤ sDf,4r

(x)(1 + Cd,αΛ0,3r(sDf
)) , x ∈ Df,3r .

Let M(t) = sup
x1=t

sDf
(x)/(f(4t))α. Inscribing Df,r into a cylinder and using GD(x, y) ≤

Cd,α|x− y|−d+α one can show that sDf,t
(x) ≤ Cd,α(f(t))α. We thus proved that:

M(r) ≤ c1 + c2

∫ 1

2r

M(t)(f(4t))d+α−1t−d−αdt ,

where c1 and c2 are some constants depending on d and α. Let R > 0 satisfy

2c2

∫ R

0

(f(t))d+α−1t−d−αdt < 1 .

Then:
M(r) ≤ c1 + (1/2) sup

(2r,R)

M + c2If sup
(R,1)

M .

It follows that M is bounded by 2c1 + 2c2If sup(R,1) M and hence Λ0(sDf
) is finite. �

The next result is an extension of [10, Lemma 7].

Proposition 3 If y ∈ ∂DM ∩ (D
c
)∗ then

MD(x, y) = lim
D

c3z→y

PD(x, z)

PD(x0, z)
. (67)

Proof: Suppose that y = 0 is a limit point of D and of the interior of Dc, and D is thick
at 0. We denote Dr = D ∩ Br, D′

r = D \Dr. Assume that t > 0 and 4t < |x| ∧ |x0|, and
let z ∈ Bt \D. By Lemma 7 and Remark 2∫

Dt

GD(x, v)ν(v, y)dv ≥ Cd,α

∫
D3t

sD2t(v)ν(v, y)dv

∫
D\D2t

GD(x, v)ν(v, y)dv .

This also holds for x = x0. By Fatou’s lemma we have limD
c3z→0

∫
Dt

sD2t(v)ν(v, y)dv = ∞.
Thus, (2) yields

lim
D

c3z→0

PD(x, z)

PD(x0, z)
= lim

D
c3z→0

∫
Dt

GD(x, v)ν(v, y)dv∫
Dt

GD(x0, v)ν(v, y)dv
,

provided that limits exist. If δ > 0 then for sufficiently small t by (9) we obtain

MD(x, 0)− δ ≤
∫

Dt
GD(x, z)ν(z, y)dz∫

Dt
GD(x0, z)ν(z, y)dz

≤ MD(x, 0) + δ ,

which proves (67). For general y ∈ ∂D we use translation invariance. If y = ∞ we use
inversion. Namely, (60) and |Tx− Tz| = |x− z|/(|x||z|) yield

PD(x, z) = |x|α−d|z|−α−dPTD(Tx, Tz) ,
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see [17]. This, and (61) yield (67). �
If D = B(0, r), r > 0, and x0 = 0, then we have

MD(x, Q) = rd−α (r2 − |x|2)α/2

|x−Q|d
, |x| < r , (68)

for every Q ∈ ∂B(0, r). (68) follows from Proposition 3 and (3) or (9) and (19). The
formula was given before in [25], [10], [20]. We note that Br is thick at all its boundary
points Q because GBr(x, v) ≈ (r − |v|)α/2 as Br 3 v → Q, see (19). More generally, a
Lipschitz (or even κ-fat) domain is thick at all its boundary points, as follows from [9]
([38]). For more information on the boundary potential theory in Lipschitz domains we
refer to the papers [10], [4], [33], which may suggest further applications.

We note that by Fatou’s lemma, if y ∈ ∂DM then PD(x, z) → PD(x, y) = ∞ as
D

c 3 z → y. If y ∈ ∂D\∂DM and D
c 3 z → y non-tangentially (i.e. |z−y| ≤ c dist(z, D)

for some c > 0) then by dominated convergence we have PD(x, z) → PD(x, y) < ∞.
Majority of our references below represent the probabilistic potential theory. For the

interpretation of our results in probabilistic terms we refer, among others, to [22] and
[7]. We wish to provide the following probabilistic connection. The (thickness) condition
Λx(sD) = ∞ has appeared implicitly in [18] and explicitly in [39]. Authors of these papers
consider the following property of the symmetric α-stable process {Xt} in Rd and a given
domain D: There exist a random time interval (τ0, τ0 +1) such that X(t)−X(τ0) ∈ D for
t ∈ (τ0, τ0 + 1). If D is a thorn then the property holds if and only if Λ0(sD) = ∞ ([18]).
In [39] all open sets D are considered and the existence of such interval is established if
Λ0(sD) is infinite. We conjecture the the thickness of D at 0 is actually a characterization
of this property.
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Lévy measure for a certain class of Markov processes. Probab. Theory Related Fields
114 (1962), 207–227.

[27] N. Jacob, Pseudo differential operators and Markov processes. Vol. I, II, III Imperial
College Press, London, 2001-2005.

[28] T. Jakubowski, The estimates for the Green function in Lipschitz domains for the
symmetric stable processes. Probab. Math. Statist. 22 (2002), no. 2, Acta Univ.
Wratislav. No. 2470, 419–441.

[29] T. Kulczycki, Properties of Green function of symmetric stable processes. Probab.
Math. Statist. 17 (1997), no. 2, Acta Univ. Wratislav. No. 2029, 339–364.

[30] T. Kulczycki, Intrinsic ultracontractivity for symmetric stable processes. Bull. Polish
Acad. Sci. Math. 46 (1998), no. 3, 325–334.

[31] H. Kunita, T. Watanabe, Markov processes and Martin boundaries I. Illinois J.
Math. 9 1965 485–526.

[32] N. S. Landkof, Foundations of modern potential theory Springer-Verlag, New York-
Heidelberg 1972.

[33] K. Michalik, M. Ryznar, Relative Fatou theorem for α-harmonic functions in Lips-
chitz domains. Illinois J. Math. 48 (2004), no. 3, 977–998.

[34] K. Michalik, K. Samotij, Martin representation for α-harmonic functions. Probab.
Math. Statist. 20 (2000), 75–91.

[35] R. Pinsky, Positive harmonic functions and diffusion Cambridge Studies in Advanced
Mathematics, 45. Cambridge University Press, Cambridge, 1995.

[36] S. Port, Hitting times and potentials for recurrent stable processes. J. Analyse Math.
20 (1967), 371–395.
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