Optimization Theory

Applied Mathematics

Problem set 1

1. Show that 2-dimensional function $f(x, y)=\left(x^{2}-y\right)^{2}+(x+y)^{2}$ has two global minima and one stationary point, which is neither a local maximum nor a local minimum.
2. ([Be99]) Find all local minima and all local maxima of the 2-dimensional function $f(x, y)=\sin x+\sin y+\sin (x+y)$ within the set

$$
\left\{(x, y) \in \mathbb{R}^{2}: x \in(0,2 \pi), y \in(0,2 \pi)\right\} .
$$

3. ([Be99]) For each value of the scalar β, find the set of all stationary points of the following function of the two variables x and y

$$
f(x, y)=x^{2}+y^{2}+\beta x y+x+2 y .
$$

Which of those stationary points are local minima? Which are global minima and why? Does this function have a global maximum for some value of β ?
4. ([Be99]) Show that the 2-dimensional function $f(x, y)=\left(y-x^{2}\right)^{2}-x^{2}$ has only one stationary point, which is neither a local minimum nor a local maximum. Next, consider the minimization of the function f subject to the constraint $-1 \leq y \leq 1$. Show that now there exists at least one global minimum and find all global minima.
Hint: Rewrite the function f as a sum of a square of some expression and a function of the variable y, then find a lower bound on this sum and a pair of x and y giving the value of f equal to this lower bound.
5. Find all the local minima and all the local maxima of the 3 -dimensional function

$$
f(x, y, z)=x^{3}-4 x^{2}+y^{2}+z^{2}-2 x y+x z-y z+5 z
$$

6. Show that the n-dimensional function

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(\left\|\left(x_{1}, x_{2}-x_{1}, x_{3}-x_{2}, \ldots, x_{n}-x_{n-1}, 2-x_{n}\right)\right\|_{2}\right)^{2}
$$

has exactly one stationary point which is a global minimum. Compute this minimum.
7. Show that the 2-dimensional function $f(x, y)=-(2 x-y)^{2}+x$ is concave. Find its global minimum subject to linear constraints

$$
\left\{\begin{array}{l}
x+2 y \leq 8 \\
4 x-5 y \leq 6 \\
-3 x-y \leq 5 \\
-3 x+2 y \leq 8
\end{array}\right.
$$

8. Show that if $f: A \rightarrow \mathbb{R}$ is a convex function and A is a convex set, then:
(a) Any local minimum of f over A is a global minimum of f.
(b) If A is open and ∇f continuous, then $x^{*} \in A$ is a global minimum of f iff it is a stationary point.

Is it possible that f has no global minimum if A is bounded? Is it possible that f has a global minimum which is not a stationary point of f if A is not open?
9. ([Be99]) Show that the following statements are true:
(a) Any vector norm is a convex function.
(b) The weighted sum of convex functions, with positive weights, is convex.
(c) If I is an index set, $C \subset \mathbb{R}^{n}$ is a convex set, and $f_{i}: C \rightarrow \mathbb{R}$ is convex for each $i \in I$, then the function $h: C \rightarrow \mathbb{R} \cup\{+\infty\}$ defined by

$$
h(x)=\sup _{i \in I} f_{i}(x)
$$

is also convex.
10. Show that the function

$$
f(x, y, z)=x^{4}+6 x^{2} z^{2}+3 z^{4}+x^{2}-4 x y+4 y^{2}+z^{2}+y
$$

is strictly convex. Find its unique global minimum.

References:

[Be99] D.P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA: 1999.

