Optimization Theory

Applied Mathematics

Problem set 1

- 1. Show that 2-dimensional function $f(x,y) = (x^2 y)^2 + (x + y)^2$ has two global minima and one stationary point, which is neither a local maximum nor a local minimum.
- 2. ([Be99]) Find all local minima and all local maxima of the 2-dimensional function $f(x, y) = \sin x + \sin y + \sin(x + y)$ within the set

$$\{(x,y) \in \mathbb{R}^2 : x \in (0,2\pi), y \in (0,2\pi)\}.$$

3. ([Be99]) For each value of the scalar β , find the set of all stationary points of the following function of the two variables x and y

$$f(x,y) = x^{2} + y^{2} + \beta xy + x + 2y.$$

Which of those stationary points are local minima? Which are global minima and why? Does this function have a global maximum for some value of β ?

- 4. ([Be99]) Show that the 2-dimensional function $f(x, y) = (y x^2)^2 x^2$ has only one stationary point, which is neither a local minimum nor a local maximum. Next, consider the minimization of the function f subject to the constraint $-1 \le y \le 1$. Show that now there exists at least one global minimum and find all global minima. Hint: Rewrite the function f as a sum of a square of some expression and a function of the variable y, then find a lower bound on this sum and a pair of x and y giving the value of f equal to this lower bound.
- 5. Find all the local minima and all the local maxima of the 3-dimensional function

$$f(x, y, z) = x^{3} - 4x^{2} + y^{2} + z^{2} - 2xy + xz - yz + 5z$$

6. Show that the n-dimensional function

$$f(x_1, \dots, x_n) = \left(\| (x_1, x_2 - x_1, x_3 - x_2, \dots, x_n - x_{n-1}, 2 - x_n) \|_2 \right)^2$$

has exactly one stationary point which is a global minimum. Compute this minimum.

7. Show that the 2-dimensional function $f(x, y) = -(2x - y)^2 + x$ is concave. Find its global minimum subject to linear constraints

$$\begin{cases} x + 2y \le 8 \\ 4x - 5y \le 6 \\ -3x - y \le 5 \\ -3x + 2y \le 8 \end{cases}$$

- 8. Show that if $f: A \to \mathbb{R}$ is a convex function and A is a convex set, then:
 - (a) Any local minimum of f over A is a global minimum of f.
 - (b) If A is open and ∇f continuous, then $x^* \in A$ is a global minimum of f iff it is a stationary point.

Is it possible that f has no global minimum if A is bounded? Is it possible that f has a global minimum which is not a stationary point of f if A is not open?

- 9. ([Be99]) Show that the following statements are true:
 - (a) Any vector norm is a convex function.
 - (b) The weighted sum of convex functions, with positive weights, is convex.
 - (c) If I is an index set, $C \subset \mathbb{R}^n$ is a convex set, and $f_i : C \to \mathbb{R}$ is convex for each $i \in I$, then the function $h: C \to \mathbb{R} \cup \{+\infty\}$ defined by

$$h(x) = \sup_{i \in I} f_i(x)$$

is also convex.

10. Show that the function

$$f(x, y, z) = x^4 + 6x^2z^2 + 3z^4 + x^2 - 4xy + 4y^2 + z^2 + y$$

is strictly convex. Find its unique global minimum.

References:

[Be99] D.P. Bertsekas, Nonlinear Programming, Athena Scientific, Belmont, MA: 1999.