Leonardo, Vol. 12, pp. 19-25.

Pergamon Press, 1979, Printed in Great Britain.

THE NON-EUCLIDEAN
SYMMETRY OF ESCHER'S PICTURE
‘CIRCLE LIMIT IN”

H. S. M. Coxeter**

Abstract—Of all Escher's pictures with a mathematical background, the most sophisticated is his
1959 woodcut, Circle Limit I, which uses four colours in addition to black and white. Queues of
fishes of each colour are swimming along white arcs that cut the peripheral circle at a certain angle.
After discussing the kind of synumetry that is involved and the underiying regular lessellations (so
cleverly disguised), the author explains why the above-mentioned angle is not 90° but 80°,

I. INTRODUCTION

I first met Escher [1] in September 1954, when an
exhibition of his work was sponsored by the
International Congress of Mathematicians, meet-
ing that year in Amsterdam. Throughout the
previous 17 years he had been making designs in
which a drawing of some animal {(such asafishora
reptile or a bird) is repeated as on wallpaper, with
two remarkable innovations: the basic unit (usually
4 single animal, or one half of a symmetrical animal
or two different animals juxtaposed) is repeated not
only by translations but also by other isometries (or
congrueny transformations). rotations, reflections or
glide-reflections [2]; and the replicas ingeniously fit
together so that there are no interstices. In the
language of mathematics (a subject in which Escher
resolutely claimed to be ‘absolutely innocent of
training or knowledge’), the basic unit is a
Jundamental region for a symmetry group.

In a letter of December 1958 he wrote: ‘Did I ever
thank you for sending me . . . *A Symposium on
Symmetry”? I was so pleased with this booklet and
proud of the two reproductions of my plane
patterns!

‘Though the text of your article on “Crystat
Symmetry and its Generalizations” [3] is much too
learned for a simple, self-made plane pattern-man
like me, some of the text-illustrations and especially
Figure 7, page 11, gave me quite a shock,

‘Since a long time I am interested in patterns with
“motives™ getting smaller and smaller till they reach
the limit of infinite smallness. The question .is
relatively simple if the limit is & point in the centre of
a pattern. Also a line-limit is not new to me, but I
was never able to make a pattern in which each

*This article is based on a lecture given in May 1978 at the
University of Siena, Ialy, by request of the Dept. of
Mathematics there. ]

*¥Mathematician. University of Toronto. Toronto M5S 1A1,
Canada, (Received 18 Sept. 1978)

“blot” is getting smaller gradually from a centre
towards the outside circle-limit, as shows your
Figure 7 [reproduced here as Fig. 1]. I tried to find
out how this figure was geometrically constructed,
but I succeeded only in finding the centres and radii
of the largest inner-circles. If you could give me a
simple explanation how to construct the following
circles, whose centres approach graduvally from the
outside till they Teach the limit, I should be

" immensely pleased and very thankful to you! Are
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there other systems besides this one to reach a circle-
limit? _ ‘

‘Nevertheless I used your model for a large
woodceut (of which I executed only a sector of 120°
in wood, which I printed 3 times). I am sending you
acopyofit. ... .

This was his picture ‘Circle Limit I’, concerning
which he wrote on another occasion [4]: *The largest
animal figures are now located in the centre, and the
limit of the infinitely many and infinitely small is

Fig. 1. Pattern whose symmetry group is (6, 4, 2) (with
scaffolding). Twe adjacent triangles (one white and one black)
form a fundamental region.
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reached at the circular edge. The skeleton of this
configuration, apart from the three straight lines
passing through the centre, consists solely of arcs
with increasingly shorter radii the closer they
approach the limiting edge. In addition, they all
intersect it at right angles. This woodcut Circle
Limit I, being a first attempt, displays all sorts of
shortcomings. Not only the shape of the fish, still
hardly developed from rectilinear abstractions into
rudimentary animals, but also their arrangement
and relative position, leave much to be desired. . . .
There is no continuity, no “traffic flow”, no unity of
colour in each row.’

IT. THE HYPERBOLIC PLANE

Replying to Escher’s letter, I told him that Fig, 1
is one of infinitely many such patterns in which a
Buclidean or non-Euclidean plane is tessellated by
black and white triangles, each having angles

Trn

pqr
at its three vertices (x means 180°). One vertex is
surrounded by p black and p white triangles,
another by ¢ and ¢, the third by r and r. The
symmetry group of such a patfern includes {(and
usuatly coincides with) a group that is denoted by
(b, g, r), because it is generated by rotations of
periods p, ¢, r about the vertices of any one of the
triangles,

The spherical cases 1 1

(-l + = + - >1)are:
P q9 r

(. 2,2),(3,3:2,04,3,2),(5,3,2).

The corresponding patterns are formed by great
circles decomposing the sphere into spherical

triangles.
The Euclidean cases ( 1,1 41
p 4

(3,3,3, 442, (63,2

= 1) are:

Here straight lines of the Euclidean plane form
ordinary triangles (equilateral in the first case).
The hyperbolic cases (% - %1 + % <1)

are infinite in variety. In one of Poincaré’s models,
the hyperbolic plane appears as the interior of a
bounding circle Q drawn in the Euclidean plane.
Angles are represented faithfully but distances are
distorted, the points of Q itself being infinitely far
away.

In Fig. 1, the cluster of 6+6 triangles in the
middle fills a regular hexagon, Four replicas of this
hexagon fit together at each vertex, making
altogether an infinite regular tessellation {6, 4} (6
specifying hexagon, 4 the number of ‘faces’ at a
vertex). BEvery (p, ¢, 2) is the rotational symmetry

group of such a regular tessellation [p, ¢]. (The
regular tessellation is symmetrical also by re-
flections that interchange black and white.)

In this Poincaré model, the ‘straight’ lines of the
hyperbolic plane appear as arcs of circles ortho-
gonal to Q. The exterior of Q is not part of the
hyperbolic plane, but its points are the centres of
these circles. Whenever three or more hyperbolic
lings pass through a point, the corresponding circles
orthogonal to Q have a second common point
outside {; they are coaxial and so their centres lie on
a Euclidean line. Whenever a circle belongs to two
such coaxial pencils, its centre is determined as the
point of intersection of the two corresponding lines
of centres; such lines form a *scaffolding’ which can
be used to construct the tessellation.

Escher’s sketch-books show that he diligently
pursued these ideas before completing ‘Circle
Limits II, TII, IV". In contrast to his criticism of
‘Circle Limit I" {(quoted above), he wrote: ‘In the
colonred woodcut Circle Limit IIF most of these
defects have been climinated. We now have only
“through traffic” series: all the fish of the same
series have the same colour and swim after each
other, head to tail, along a circular arc from edge to
edge. The nearer they get to the centre, the larger
they become. Four colours are needed for each
series to be in complete contrast with its surround-
ings. As all these strings of fish shoot up like rockets
from infinitely far away, perpendicularly from the
boundary, and fall back again whence they came,
not one single component ever reaches the edge.
Outside there is “absolute nothingness”. And yet

~ this round world cannot exist without the emptiness

around it, not only because “inside” presupposes
“outside”, but also because it is out there in the
“nothingness” that the scaffolding lies, determining
with geometric precision the centres of the circular
arcs which form the skeleton.’

In his commentary [5], Bruno Ernst wrote: ‘The
best of the four is Circle Limir II1, dated 1959 , ., ..
The network {skeleton] for this is a stight variation
on the original one, In addition to arcs placed at
right angles to the circumference (as they ought to
be), there are also some arcs that are not so placed.’

In Part VI we shall see why a/l the white arcs
‘ought’ to cut the circumference at the same angle,
namely 80° (which they do, with remarkable
accuracy). Thus Escher’s work, based on his
intuition, without any computation, is perfect, even
though his poetic description of it (Yoodrecht uit de
fimiet’, ‘perpendicularly from the boundary’) was
only approximate.

III. AREGULAR COMPOUND TESSELLATION

Looking carefully at ‘Circle Limit IIT’ (Fig. 2, cf.
colour plate), we see that the mathematically
significant points are of three types, say P, O, R,
each occurring infinitely many times:
P, where the right fins of 4 fish come together
{two colours alternating) as at the centre of the
whole picture;
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(2, where the left fins of 3 fish come together

(using 3 of the 4 colours);

R, where the mouths of 3 fish meet the tail-tips of

3 others (again using 3 of the 4 colours).

The points of type P are the vertices of triangles
that, from the standpoint of hyperbolic geometry,
are equilateral, with a point of type Q or R at the
centre of each triangle (see Fig. 3}. Each point of
type P belongs to 8 such triangles, so we have
altogether a tessellation {3, 8}: congruent equil-
ateral triangles, 8 at each vertex, Unlike the
Euclidean equilateral triangle, whose angle is 60°,
this hyperbolic triangle has an angle of 45°, allowing
8 replicas to fill up the whole 360° at their common
vertex.

The points of types @ and R, being the centres of
the triangles, are together the vertices of the dual (or
reciprocal) tessellation {8, 3}: congruent regular
octagons, 3 at each vertex (see Figs. 4 and 5).

Among the points of type P, all the (42) = { pairs
of the 4 colours occur with the same frequency. At
the centre of the whole picture the two colours are
green and yellow. We have to proceed a long way
out before finding the complementary pair: blue
and brown. Having found one such point, we soon
see that there are 8 of them, forming a regular
octagon. Figure 3 shows the way 16 faces of {3, 8}

fit together to fill up this large octagon. The angle at
each vertex of the octagon, being the angle of a
triangular face of {3, 8}, is'45°: one-eighth of a
whole turn. It follows that each of these 8 blue-
brown P-points is surrounded by 8 such octagons.
(Seven of them are too small to be seen without a
microscope, although from the hyperbelic stand-
point they are all the same size.) All the vertices of
this infinite tessellation {8, 8} are blue-brown P-
points. The remaining five pairs of colours yield five
more {8, 8 }s. The superposition of these six {8, 8 }s,
called a compound tessellation, is denoted by the

symbol
{3,8}(6{8,8}] {8, 3},

indicating that it is a compound of 6 tessellations
{8, 8} whose vertices together coincide with the
vertices of a {3, 8}, while their faces have the same
centres as the faces of the dual {8, 3}. Thus, in
effect, Escher anticipated by five years my discovery
[6] of this hyperbolic compound, which is analogous
[7) to Kepler’s stella octanguia: the finite compound

{43102 {3,311 3,4}

of 2 tetrahedra {3, 3} whose 8 vertices coincide with
those of a cube {4, 3} while their 8 faces lie in the
same planes as the faces of the reciprocal octahed-
ron {3, 4}.

Fig. 3. A portion of the regular tessellation {3, 8}.
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IV. GROUPS OF HYPERBOLIC MOTIONS

From the standpoint of hyperbolic geometry, the
disc enclosed by the peripheral circle is the whole
plane, and the fishes (which fill it) are all congruent,
There is an isometry taking any one fish to any
other, but the fish itself is not symmetrical. In other
words, when colour is disregarded, any fish serves as
a fundamental region for the symmetry group of the
whole pattern. This symmetry group 1s denoted By
(4, 3, 3) because it is generated by rotations 4, B, C
through angles 2P, 2Q, 2R about the vertices of a
triangle POR [8] where, in the present case,
P =n/4, @ = R = =f3. Such an isosceles
triangle POR is formed by any three neighbouring
points of these respective types. Each point of type
F is the common vertex of a cluster of eight such
triangles filling a face QRQRQROR of {8,3}. Any
two adjacent triangles form together a fundamental
region for this group (4, 3, 3). For instance, we can
use two that share a long side and thus form a kite
{PORQ drawn with broken lines in Fig. 3): one
quarter of a face of {8, 3}. We easily see that such a
kite has exactly the same area (in the hyperbolic
sense) as one fish.

The rotations 4, B, C satisfy the relations
A = B® = (% = ABC = 1,

which provide an abstract definition or presentation
for the group (4, 3, 3). Since 4 = (BC) !, thisisa
redundant presentation: the group is generated just
as well by B and C alone, that is, by rotations
through 120° about any two neighbouring points of
types @ and R. With two such generators, the group
has the presentation

B = = (BO® = 1.

The symmetry group (4, 3, 3) has a subgroup
(2,2,2,2,2,2)of index 12, which preserves colour.
In other words, we must travel out so far from the
middle of the picture, before finding a repetition of
both shape and colour, that the fundamental region
for the colour-preserving symmetry group has 12
times the area of a fish (that is, three times the area
of a face of {8 3}). This number 12 can be
computed by observing that there are not only four
different colours but three ways, for each coloured

Fig. 4. {8, 3}, with scaffolding, a fundamental region for the colour-preserving group, and a charecteristic
triangle POM.,




The Non-Euclidean Symmetry of Escher’s Picture ‘Circle Limit III’ 23

fish, to distribute the remaining three colours
among its neighbours. This group (2, 2,2, 2,2, 2} is
generated by half-turns about all the points of type
P or, more economically, by half-turns about just
six such points involving different pairs of the four
colours. Figure 4-shows a convenient choice of the
six points; the centres (blue-yellow, yellow-green,
green-blue) of three octagons having a common
vertex (green—blue-vellow) and the centres
(green—brown, blue-brown, yellow—-brown) of three
further octagons, each adjacent to two of the first
three. These six points P are the mid-points of the
sides of an equiangular hexagon QQQQQQ (drawn
in heavy lines) that serves as a fundamental region
for the group. The siz points @ lie on a circle (not
drawn) and, from the hyperbolic standpoint, the
sides of the hexagon are of two lengths, occurring
alternately. Thus, the hexagon is more symmetrical
than it seems to be: it has the symmetry of an
equilateral triangle.
The six half-turns satisfy the relations

N=n=TN=N=T=T;
=T, T, T,T, T Ts = 1,

which provide a presentation for the group
(2, 2, 2, 2, 2, 2), whose Euclidean counterpart

p2=(2,2,2,2)

is generated by half-turns about the mid-points of
the four sides of a rectangle (or any other
quadrangle} [9], with the presentation

T‘?:T%:T%:T%:TITZTST“:];

V. THE ARCS ALONG WHICH ESCHER’S
FISHES SWIM

Figure 5 shows a portion of the {8, 3} with heavy
arcs . . .RRRR. . .and. . .QQQQQ. . . enclos-
ing a zigzag . . .QRGRQRORQ . . .. From the
hyperbolic standpoint, the lines of this zigzag, being
edges of {8, 3}, are straight,and of equal length, say
2¢. From considerations of symmetry, we see that
the mid-points of these edges lie on a (hyperbolic)
straight line a (circular arc orthogonal to Q; see
Fig. 6). However, the arcs . . .RRRR. . . and
.. .Q00QQ. . . are not orthogonal to Q. It is
important to note that the perpendicular distance to
a from any point on either of these arcs is constant,
say d. The pair of arcs, being the locus of points
distant § from g, is called an equidistant-curve with
axis ¢ and altitude 6. The zigzag is called a Petrie
polygon of {8, 3}; every two consecutive edges
belong to a face, but no three belong to the same
face,

The equidistant-curve, like a Euclidean hyper-
bola, has two congruent branches. The R branch
appears.in Escher’s picture (Fig. 2; cf. colour plate)
as a white line along the backs of a row of fishes
chasing one another. The @ branch was not drawn
by Escher, though we can see the points of type Q
that would be strung out along it.

His white lines seem at first sight to form a
tessellation of triangles and quadrangles all of

Fig. 5. {8,3), with a Petrie polygon between the two branches of an equidistant-curve.
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Fig. 6. The angle of parallelism 0 = TI{8).

whose angles are 60°. But this is absurd, as a triangle
with angles 60° would be Euclidean, not hyperbolic.
The above discussion explains the paradox by
showing that Escher’s ‘lines’ are not straight: each is
one branch of an equidistant-curve.

VI. THE ANGLES AT THE PERIPHERAL
CIRCLE

The angle (about 80°) at which such an arc

. .RRR. . . cuts the peripheral circle Q (repre-
senting the set of all points at infinity, such as 0)
appears in Fig. 6 as the angle w at O. It reappears at
R as the angle between two arcs orthogonal to Q
(representing straight lines of the hyperbolic plane),
namely, RN (which, being orthogonal also to the
arcsagand .. . RRR. . ., represents an altitude  of the
equidistant-curve) and RQO. In the hyperbolic
geometry, these arcs RV and RO, perpendicular
and parallel (respectively) to the axis a of the
equidistant-curve, form the so-called angle of
paralielism  for the distance RN = d ; in
Lobachevsky’s notation [10]

= I(§) = 2arctane™’. (1)

The point marked P, in the lower half of Fig, 4, is
the centre of a face of {8, 3 }. Suppose this octagon
has edge 2¢ = QR and circum-radius PQ = y.
Then M, the mid-point of QR, forms with PQ a
right-angled triangle whose two acute angles are n/8
at P, n/3 at Q. Two of the classical formulae of
hyperbolic trigonometry [11] yield:

cosh @ sin(n/3) = cos(n/8) 2)

cosh ¥ = cot(n/8) cot(n/3). 3)

Similarly, in Fig. 6, MRN is a right-angled
triangle with MR = ¢v RN = 4, and angle /3
at R. Another one of the classical formulae yields

tanh § = tanh ¢ cos(n/3) = 1 tanh.¢

cos w, and by equation

2+ /2)/3,

tanh? ¢ = 1 —sech? ¢ =

1-3/2+y/D) = (3~ 2\/2)/\/2
= (\/2 —1)/4\/2 = V4 _7-1ia

Lay/2 and

By equation (1), tanh é =
(2),
cosh? ¢ =

tanh ¢
Hence, tanh § = (2'#~2~

@ = [(6) = arccos(2!'*-2"14)/2 =
arc cos 0017417 = 7T79°58'.

Escher’s integrity is revealed in the fact that he
drew this angle correctly even though he apparently
believed that it ‘ought’ to be 90°,

VII. A QUASI-REGULAR TESSELLATION OF
TRIANGLES AND QUADRANGLES

Escher’s points of type R could, of course, have
been joined in pairs by strgight line-segments in the
sense of hyperbolic geometry, that is, by arcs of
circles ofthogonal to the peripheral circle, The
result, lacking the ‘traffic flow’ which he admired in
‘Circle Limit IIl', 15 a quasi-regular tessellation of
triangles and quadrangles such that every edge
belongs to one triangle and one quadrangle. Having
just half the vertices of {8, 3}, itis #{8, 3} in the
notation of [12]. Since its vertices are the images of
R under the group generated by reflections in the
sides of the triangle PQR, itis 3 | 3 4in the notation
of [13]. We shall soon see that the angles of the
triangles and quadrangles are not 60° but 48° 41"
and 71° 19, respectively.

According to equation (3), the circum-radius y of
an octagonal face of {8, 3} is given by

(J/2+ D//3.

A quadrangular face of 2 {8, 3} is a 4-gon having
this same circum-radium y; therefore, by equation
(3) with 4 in place of 8, its angle 20, is given by

(/2+ D) /3 = cot (n/4) cot 8, = cot 8.
20, = 2arctan (/6 — ./3)

Since cach vertex of £{8, 3} is surrounded by 3
triangles and 3 quadrangles, the angle 20, of a tri-
angle is simply

20, = 120° 20,

cosh y =

= TI° 19",

= 120° =71° 19 = 48°4I",

This quasi-regular tessellation of triangles (of
angle 48°41”) and quadrangles (of angle 71° 19°) has
for its vertices all Escher’s points of type R. Thereis,
of course, a congruent /{8, 3} whose vertices, being
the remaining half of the vertices of {8, 3}, are all
the points of type ¢. In each case Escher shows only
the vertices, not the edges; therefore the angles 26,

and 20, cannot be directly measured in his picture.
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Editor’s Note—See Note by J. C. Rush in this issue [Leonardo 12,
48 (1979)).
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