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The equivalence of ergodicity and weak mixing for general infinitely divisible
processes is proven. Using this result and [9], simple conditions for ergodicity
of infinitely divisible processes are derived. The notion of codifference for
infinitely divisible processes is investigated, it plays the crucial role in the proofs
but it may be also of independent interest.
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1. INTRODUCTION

Let T = R or Z. A real-valued stationary stochastic process ( X t ) t e T is said
to be ergodic if

weakly mixing if

mixing if
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where ( S t ) l e T is the group of shift transformations induced by ( X t ) t e T and
A, BeFx (the s-field generated by the process). In the case T = Z, the
integrals in Eqs. (1.1) and (1.2) are replaced by sums ST-1.

It is obvious that Eqs. (1.3)=>(1.2) =>(1.1). In ergodic theory there
are examples of flows (S t ) t e T which are weakly mixing but not mixing and
ergodic but not weakly mixing (see [2, 7]). Usually, the weak mixing
property is much closer to mixing than to ergodicity (see Proposition 1).
However, in the case of stationary Gaussian processes, weak mixing and
ergodicity coincide (see [2]). Podgorski [8] has shown that the same is
true for symmetric stable processes; this result was later extended to sym-
metric semistable processes by Kokoszka and Podgorski [4]. In a recent
paper Cambanis et al. [1] have proven the equivalence of ergodicity and
weak mixing for all stationary symmetric infinitely divisible processes.
Since it is usually much easier to characterize weak mixing than
ergodicity, these results are important in obtaining definitive conditions
for ergodicity. Cambanis et al. [1] characterized ergodic properties of
stationary symmetric infinitely divisible processes in terms of the so-called
dynamical functional.

In this paper we prove the equivalence of weak mixing and ergodicity
for general (non-necessarily symmetric) stationary infinitely divisible pro-
cesses (Theorem 1). We investigate the codifference function for infinitely
divisible processes (Section 2) and use it to characterize ergodic properties
of stationary processes (Proposition 4 and Theorem 2). Since the codif-
ference depends only on two-dimensional marginal distributions of the pro-
cess (or even less, see Eq. (2.1)), as opposed to a dynamical functional
which requires all finite-dimensional distributions, our conditions for
ergodicity and mixing seem to be easily verifiable. Finally, we would like
to mention that the method of proof of Theorem 1 does not rely on the
usual symmetrization technique (which does not seem to be applicable
here, see Remark 4) but rather on a harmonic analysis of the codifference
and its components.

For the sake of completeness, Eqs. (1.2) and (1.3) are not equivalent
for stationary infinitely divisible processes; an appropriate example was
constructed by Gross and Robertson [3].

1.1. Notation and Basic Facts

A random vector X is said to be infinitely divisible (i.d.) if for every
positive integer n, X has the same distribution as the sum of n identically
distributed and independent random vectors.

A stochastic process is i.d. if all its finite-dimensional marginal dis-
tributions are i.d.
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The following lemma, due to Koopman and von Neumann [5], charac-
terizes Cesaro convergence for positive, bounded sequences and functions.
For a proof the reader may consult, e.g., [7]. Recall that the density of a
subset D of a positive half-line is equal to l i m c - I ( | D n [0, C]|/C), if the
limit exists, where | • | denotes Lebesgue measure. In the case when D is a
subset of positive integers we define its density as l i m n - > I ( | D n {1,..., n} |/n).

Lemma 1. Let f: R+->R [f: N->R, respectively] be nonnegative
and bounded. A necessary and sufficient condition for

is that there exists a subset D of density one in R+ [in N] such that

Applying Lemma 1 to Eq. (1.2) we get the following well-known
characterization of weak mixing.

Proposition 1. A stochastic process is weakly mixing if and only if for
any A, B e Fx there exists D, a subset of the density one in T, such that

We will need the following fact (see Ref. 6, Thm. 3.2.3).

Lemma 2. Let u be a finite measure on R [ [0, 2P), respectively]. Then

where ft denotes the Fourier transform of u.
We will also use the following lemma.

Lemma 3. Let ( X t ) i e T be a stationary i.d. process and Q0t be the
Levy measure of £(X0, Xt). Then, for every d>0, the family of finite
measures (Q0l|Kc)t E T is weakly relatively compact and

where Kd = {(x, y): x2 + y2 < d 2 } .
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Proof. To prove the first part of the lemma it is enough to show
that the family ( f ( X 0 , X t)) t e T is weakly relatively compact. Indeed, by
stationarity, for every a > 0 and t e T, we have

which implies

To prove the second part, again using stationarity, we get

for any positive e, if only d is small enough. This yields Eq. (1.4) and
completes the proof.

2. CODIFFERENCE

In the past several ideas of generalizing Gaussian covariance have
been considered. In the case of symmetric a-stable processes, the following
two notions were studied: the covariation [ X 1 , X 2 ] , which requires a > 1,
and the codifference r ( X 1 , X2), which is well-defined for all a (see Ref. 10,
Sections 2.7 and 2.10, respectively, and references therein). When a<2, the
covariation is linear with respect to the first variable (but not with respect
to the second one), the codifference is not linear with respect to any of
variables but is nonnegative definite instead. Both notions coincide with the
covariance when a =2 (the Gaussian case) but neither one of them
describes the distribution of a stable non-Gaussian process as the
covariance does for a Gaussian process.

In this paper we study the codifference for arbitrary i.d. process which,
as we show, can be used to measure independence. Since the codifference
is always nonnegative definite (Proposition 2 next), we may apply some
methods of harmonic analysis in the investigation of i.d. processes.

We define the codifference T ( X 1 , X2) of jointly i.d. real random
variables X1 and X2 as follows
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where log denotes the continuous branch of the logarithmic function which
takes on value 0 at 1. We will now give more explicit form of r ( X 1 , X2).
Namely, if X = ( X 1 , X2) has two-dimensional i.d. distribution then, by the
Levy-Khintchine formula, there exist aeR2 , a covariance matrix
Z = [Sij]i,j=1,2, and a Levy measure Q in R2 such that for every 6 e R2,

where

Substituting (1, -1), (1, 0) and (0, -1) for 9 in Eq. (2.2) we get, respec-
tively,

and

Substituting these formulas into Eq. (2.1) we obtain

Proposition 2. Let ( X t ) t e T be an arbitrary i.d. process. Then the
function

is nonnegative definite.
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By Eq. (2.3),

Since (s, t) -> ast is nonnegative definite, it is enough to show that the
second term has this property. The latter is a consequence of the unique-
ness of Levy measures and follows from the following more general lemma.

Lemma 4. Let (X1,..., Xn) be an i.d. random vector, Qij be the Levy
measure of &(X i , Xj), and let g: R -> C be such that | g ( x ) | < C min(|x|, 1).
If aij = $ R 2 g ( x ) g ( y ) Q i j ( d x , d y ) , then the matrix [aij]ij=1....n is non-
negative definite.

Proof. Let Q be the Levy measure of y(X1,..., Xn). By the unique-
ness of Levy measures, which implies their consistency, we have

1 < i, j < n. Thus, for every z1,..., zn e C,

which ends the proof.

The following result is an analogue of the fact that uncorrelated jointly
normal random variables are independent.

Proposition 3. Let (X1,..., Xn] be an i.d. random vector. Assume that,
for each i, 1<i<n, the Levy measure of y (X i ) has no atoms in 2nZ. Then
X1,..., Xn are independent if and only r ( X i ±X j) = 0, for every i = j .

Proof. If Xi and Xj are independent then, of course, Ee i ( X i ± X j ) =
Ee'x'Ee±lXj, implying T(X,, ±Xj) = 0. To prove the converse, observe that
if r(Xi, +Xj) = 0, then, by Eq. (2.3)
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and

(we use the notation from Lemma 4). Summing these equalities side-by-
side and taking the real part on the left-hand side we get

We will show that Q is concentrated on the axes. Assume, to the contrary,
that there is a y = (y1,..., yn} belonging to the support of Q and such that
y i y j = 0 , for some i = j . Then, from Eq. (2.5), we infer that yi = 2nk or
yj = 2nl for some nonzero integers k, l, and, either

or

Since the projection of Q onto the mth axis coincides with the Levy
measure of L ( X m ) on every set not containing zero, 1<m<n, we infer
that either the Levy measure of £(X i) or of £(Xj) has an atom in 2nZ.
This contradicts our assumption and proves that Q is concentrated on the
axes. Using this information and Eq. (2.4) we get Sij = 0, for i = j . It now
follows from the Levy-Khintchine form of the characteristic function that
the coordinates of (X1,..., Xn) are independent.

Remark 1. The condition T ( X 1 , X2) = 0 alone does not imply the
independence of X1 and X2, except when ( X 1 , X2) is Gaussian. Indeed, as
it is stated in [Ref. 10, p. 104], one can find a symmetric a-stable random
vector ( X 1 , X2), for any 1 <a<2, such that i (X1 , X2) = 0 and X1, X2 are
dependent (notice that Levy measures of stable random variables are con-
tinuous, thus satisfy conditions of Proposition 3). We will give here another
easily verifiable example. Consider an i.d. random vector ( X 1 , X2) without
Gaussian part and with the corresponding Levy measure Q given by
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where x, y, z are positive solutions of the system of equations

Observe that, for example, x = 2 — R2, y = R2 and z = 2 R2 — 2 are such
positive solutions. Using Eq. (2.3) it is easy to check that r (X 1 , X2) = 0, but
since Q is not concentrated on the axes, X1, X2 are dependent.

Remark 2. It is easy to generalize Proposition 3 to arbitrary
infinitely divisible random vectors (X1,..., Xn). Indeed, let Ci denote the set
of atoms of the Levy measure of L ( X i ) (Ci is countable and does not con-
tain zero), and put Zi = {2Pk/c : k e Z, ceC i) . Then, for each nonzero
number a which does not belong to any of Zi, 1 < i < n, the random vector
(aX 1 , . . . ,aX n ) satisfies the condition on Levy measures of Proposition 3.
Thus, using this proposition, X1,..., Xn are independent if and only if
T(aX i , +aXj) = 0 for every i=j.

We will now return to stationary i.d. processes. If ( X t ) t e T is stationary,
then

hence the function

is nonnegative definite and

By Bochner's theorem there exists a finite Borel measure v on R (or on
[0, 2P) if T = Z) such that

Thus

where exp(v) = Sn=0(v*n/n!), v*0 = d0.
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In Ref. 9 a simple condition for mixing of i.d. processes is given.
Namely, if (X t) t e T is a stationary i.d. process such that Q0, the Levy
measure of X0, has no atoms in the set 2PZ, then this process is mixing if
and only if Ee i ( X 0 - x i ) |Ee iX0| -2 -> 1, as t -> oo. In terms of the codifference
we have the following.

Proposition 4. Let ( X t ) l e T be a stationary i.d. process such that Q0,
the Levy measure of X0, has no atoms in the set 2PZ. Then the process is
mixing if and only if T ( t ) -> 0, as t -> oo; it is weakly mixing if and only if
there exists a set D of the density one in T such that i ( t ) -> 0, as t -> oo,
teD.

Remark 3. It follows from Ref. 9 (see Corollary 3 and the comment
following Theorem 3) that (X t) t 6 T is weakly mixing if and only if there
exists a set D of the density one in T such that

3. ERGODICITY AND WEAK MIXING

The following is the main result of this paper.

Theorem 1. Let ( X t ) l e T be a measurable, stationary i.d. process.
Then the process is ergodic if and only if it is weakly mixing.

Proof. Any weakly mixing process is ergodic. We will show the con-
verse for i.d. processes. Let ( X t ) t e T be i.d. stationary and ergodic and let

be its codifference. In view of Eq. (2.7), T = v, and since both terms on the
right-hand side of Eq. (3.1) are nonnegative definite, there exist finite Borel
measures VG and vp on R [on [0, 2P) if T = Z] such that

Thus v = vG + vp. The ergodicity of the process implies

860,10 1-6
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(see, e.g., [2, p. 19]). Hence, by Eq. (3.3) and Lemma 2,

Thus

From Eq. (3.4), vG * vG({0}) = 0, therefore

Since a0t is real, by Lemma 1, there exists a set D of the density one in T,
such that

Now, by Eqs. (3.1), (3.2), (3.4) and Lemma 2 we have

Taking the real part of the first term here we get

By stationarity and Lemma 4, the functions
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and

are nonnegative definite. Therefore, there exist finite Borel measures A1 and
A2 such that Eq. (3.6) can be rewritten as

implying A1({0}) = L2({0}) = 0. Hence

Define RT(dx, dy) = T-1 \T Q0 t(dx, dy) dt. Since, by Lemma 3, the family
of finite measures (Q 0 t | k d ) t e T is weakly relatively compact for every d>0,
the same is true for the family (R T \ K d ) T > 0 . By Eq. (3.7),

We will show that

To this end, let Tn-> oo, TneT. Using the diagonalization procedure we
can find a subsequence (T'n} of ( T n ) and a measure R on R2\{0} such that

for every d > 0. By Eq. (3.8) and the fact that (cos x —1)(cos y — 1 ) > 0 , we
get

for every 6 > 0, implying that R is concentrated on the set of lines
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By the stationarity of the process, the projections of Q0l onto the first and
the second axis (excluding zero) are equal to Q0, the Levy measure of
L ( X 0 ) ; the same is true for RT and so for R.

Let us assume for a moment that Q0 has no atoms in the set 2nZ.
Then R must be concentrated on the axes in R2. Hence, for every d>0
such that R({(x, y) : x2 + y2 = d2}) = 0,

Since the last quantity can be made arbitrarily small by Eq. (1.4) of Lemma 3,
Eq. (3.9) follows. From Eq. (3.9) and Lemma 1 we infer that there exists
a set D of density one in T such that

Equations (3.5) and (3.10) imply weak mixing by Remark 3.
Now we will remove the assumption that Q0 has no atoms in 2nZ. Let

{x,,} be the sequence of atoms of Q0. The set Z= {2nk/xn :n>1, keZ}
is countable hence there exists a nonzero a e R\Z. Consider the process
(aX t ) t £ T and let Qa be the Levy measure of aX0. It is easy to verify that
Qa has no atoms in the set 2nZ; since the process ( a X t ) t £ T is also ergodic,
it is weakly mixing by virtue of the first part of the proof. This implies that
( X t ) t e T is weakly mixing as well. The proof is complete.

Corollary 1. An infinitely divisible stationary process ( X t ) t £ T is
ergodic if and only if its symmetrization is ergodic.

Proof. Clearly it is enough to prove the corollary only for the
Poissonian part of ( X t ) t e T . Let (Y 0 , Yt) = ( X 0 , Xt) - (X'0, X't) be the sym-
metrization of (X0, Xt). If Q0l denotes the Levy measure of y(X0, X t), then
Q0t, the Levy measure of L(Y0, Y t), is given by the formula: for every
Borel set A in R2
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Now notice that the second condition of Remark 3 is satisfied by Q0t if and
only if it is satisfied by Q0t. Theorem 1 concludes the proof.

Remark 4. One may wonder whether the usual symmetrization
method could be used to prove Corollary 1 directly (and then one can
deduce Theorem 1 from the result of Ref. 1, where the symmetric case was
studied), but this method holds some major obstacles on the way. The
most basic of these is, if an -> a in Cesaro sense, then not necessarily
\an\2-> \a\2 in Cesaro sense. Another problem with this approach is that,
for a measure preserving transformation S, the fact that S is ergodic does
not imply that SxS is ergodic (if it were, S would be weakly mixing by
[Ref. 7, Thm. 6.1] and there would be nothing to prove).

Theorem 2. Let (X,)lsT be an i.d. processes such that the Levy
measure of X0 has no atoms in InL. Then (A",) /eT is ergodic (weakly
mixing) if and only if one of the following conditions holds:

there exists a set D of density one in T such that

Proof, Condition (i) is just Eq. (3.3). Thus (i) is equivalent to
ergodicity of ( X , ) , s T by the virtue of the proof of Theorem 1. Since r is
bounded, (ii) is equivalent to (vi) by Lemma 1. We have just shown that
(i) is equivalent to ergodicity of ( X , ) l s T , therefore (iii) is equivalent to
ergodicity of its symmetrization. However, by Corollary 1, ergodicity of the
original process and of its symmetrization are equivalent, (iv) is a version
of (i i) for the symmetrization of the process and is equivalent to (vii).

The remaining equivalences are easy consequences of Proposition 4,
Remark 3, Theorem 1, and Corollary 1.

Remark 5. As we have already mentioned it in the proof of Theorem 1,
if the Levy measure of L ( X 0 ) has atoms in 2nZ, then there is a nonzero



number a such that the Levy measure of L ( a X 0 ) has no atoms in 2nL. But
the ergodic properties of the rescaled process and of the original one are
the same. This simple remark makes Theorem 2 applicable for arbitrary i.d.
processes.

Remark 6. Condition (viii) of Theorem 2 does not require any
assumptions on the Levy measure (see Remark 3).

Remark 7. If ( X t ) l e r is given by the stochastic integral, (A r,), (.T=d

( \ s f , ( s ) A ( d s ) ) l e T , then Theorems 4 and 5 of Ref. 9 provide simple condi-
tions for mixing and weak mixing in terms of the family {/,}/6T. This is
probably the most convenient case of an i.d. process in which ergodic
properties of the process can be easily verified.
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