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Summary. We give a review of some fluctuation theory for spectrally negative Lévy
processes using for the most part martingale theory. The methodology is based on
the techniques found in Kyprianou and Palmowski (2003) which deal with similar
issues for a general class of Markov additive processes.

1 Introduction

Two and one sided exit problems for spectrally negative Lévy processes have
been the object of several studies over the last 40 years. Significant contribu-
tions have come from Zolotarev (1964), Takács (1967), Emery (1973), Bing-
ham (1975) Rogers (1990) and Bertoin (1996a, 1996b, 1997). The principal
tools of analysis of these authors are the Wiener–Hopf factorization and Itô’s
excursion theory.

In recent years, the study of Lévy processes has enjoyed rejuvenation.
This has resulted in many applied fields such as the theory of mathematical
finance, risk and queues adopting more complicated models which involve an
underlying Lévy process. The aim of this text is to give a reasonably self
contained approach to some elementary fluctuation theory which avoids the
use of the Wiener–Hopf factorization and Itô’s excursion theory and relies
mainly on martingale arguments together with the Strong Markov property.
None of the results we present are new but for the most part, the proofs
approach the results from a new angle following Kyprianou and Palmowski
(2003) who also used them to handle a class of Markov additive processes.
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2 Spectrally negative Lévy processes

We start by briefly reviewing what is meant by a spectrally negative Lévy pro-
cess. The reader is referred to Bertoin (1996a) and Sato (1999) for a complete
discussion.

Suppose that (Ω,F ,F, P ) is a filtered probability space with filtration F =
{Ft : t > 0} satisfying the usual conditions of right continuity and completion.
In this text, we take as our definition of a Lévy process for (Ω,F ,F, P ), the
strong Markov, F-adapted process X = {Xt : t > 0} with right continuous
paths having the properties that P (X0 = 0) = 1 and for each 0 6 s 6 t,
the increment Xt−Xs is independent of Fs and has the same distribution as
Xt−s. In this sense, it is said that a Lévy process has stationary independent
increments.

On account of the fact that the process has stationary independent incre-
ments, it is not too difficult to show that

E
(
eiθXt

)
= etΨ(θ),

where Ψ(θ) = logE(exp{iθX1}). The Lévy–Khinchine formula gives the gen-
eral form of the function Ψ(θ). That is,

Ψ(θ) = iµθ −
σ2

2
θ2 +

∫

(−∞,∞)

(
eiθx − 1− iθx1|x|<1

)
Π(dx) (1)

for every θ ∈ R where µ ∈ R, σ > 0 and Π is a measure on R\{0} such that∫
(1 ∧ x2)Π(dx) <∞.

Finally, we say that X is spectrally negative if the measure Π is sup-
ported only on (−∞, 0). We exclude from the discussion however the case
of a descending subordinator, that is a spectrally negative Lévy process with
monotone decreasing paths. Included in the discussion however are descending
subordinators plus an upward drift (such as one might use when modelling
an insurance risk process, dam and storage models or a virtual waiting time
process in an M/G/1 queue) and a Brownian motion with drift. Also included
are processes such as asymmetric α-stable processes for α ∈ (1, 2) which have
unbounded variation and zero quadratic variation. By adding independent
copies of any of the above (spectrally negative) processes together one still
has a spectrally negative Lévy process.

For spectrally negative Lévy processes it is possible to talk of the Laplace
exponent ψ(λ) defined by

E
(
eλXt

)
= eψ(λ)t, (2)

in other words, ψ(λ) = Ψ(−iλ). Since Π has negative support, we can safely
say that ψ(λ) exists at least for all λ > 0. Further, it is easy to check that ψ
is strictly convex and tends to infinity as λ tends to infinity. This allows us to
define for q ∈ R,



18 Andreas E. Kyprianou and Zbigniew Palmowski

Φ(q) = sup{λ > 0 : ψ(λ) = q},

the largest root of the equation ψ(λ) = q when it exits. Note that there exist
at most two roots for a given q and precisely one root when q > 0. Further we
can identify ψ′(0+) = E(X1) ∈ [−∞,∞) which, as we shall see in the next
section, determines the long term behaviour of the process.

Suppose now the probabilities {Px : x ∈ R} correspond to the conditional
version of P where X0 = x is given. We simply write P0 = P . The equality
(2) allows for a Girsanov-type change of measure to be defined, namely via

dP cx
dPx

∣∣∣∣
Ft

=
Et(c)

E0(c)

for any c > 0 where Et(c) = exp{cXt − ψ(c)t} is the exponential martingale
under Px. Note that the fact that Et(c) is a martingale follows from the fact
that X has stationary independent increments together with (2). It is easy
to check that under this change of measure, X remains within the class of
spectrally negative processes and the Laplace exponent of X under P cx is
given by

ψc(θ) = ψ(θ + c)− ψ(c)

for θ > −c.

3 Exit problems

Let us now turn to the one and two sided exit problems for spectrally negative
Lévy processes. The exit problems essentially consist of characterizing the
Laplace transforms of τ+

a , τ−0 and τ+
a ∧ τ

−
0 where

τ−0 = inf{t > 0 : Xt 6 0} and τ+
a = inf{t > 0 : Xt > a}

for any a > 0. Note that X will hit the point a when crossing upwards as it
can only move continuously upwards. On the other hand, it may either hit 0
or jump over zero when crossing 0 from above depending on the components
of the process.

It has turned out (cf. Zolotarev (1964), Takács (1967), Emery (1973),
Bingham (1975), Rogers (1990) and Bertoin (1996a, 1996b, 1997)) that
one and two sided exit problems of spectrally negative Lévy processes can
be characterized by the exponential function together with two families,
{W (q)(x) : q > 0, x ∈ R} and {Z(q)(x) : q > 0, x ∈ R} known as the scale
functions which we defined in the following main theorem of this text.

Theorem 1. There exist a family of functions W (q) : R → [0,∞) and

Z(q)(x) = 1 + q

∫ x

0

W (q)(y) dy, for x ∈ R

defined for each q > 0 such that the following hold (for short we shall write
W (0) = W ).
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One sided exit above. For any x 6 a and q > 0,

Ex
(
e−qτ

+
a 1(τ+

a <∞)

)
= e−Φ(q)(a−x). (3)

One sided exit below. For any x ∈ R and q > 0,

Ex
(
e−qτ

−

0 1(τ−
0
<∞)

)
= Z(q)(x)−

q

Φ(q)
W (q)(x), (4)

where we understand q/Φ(q) in the limiting sense for q = 0, so that

Px(τ
−
0 <∞) =

{
1− ψ′(0)W (x) if ψ′(0) > 0
1 if ψ′(0) 6 0.

Two sided exit. For any x 6 a and q > 0,

Ex
(
e−qτ

+
a 1(τ−

0
>τ

+
a )

)
=
W (q)(x)

W (q)(a)
, (5)

and

Ex
(
e−qτ

−

0 1(τ−
0
<τ

+
a )

)
= Z(q)(x)− Z(q)(a)

W (q)(x)

W (q)(a)
. (6)

Further, for any q > 0, we have W (q)(x) = 0 for x 6 0 and W (q) is character-
ized on (0,∞) by the unique left continuous function whose Laplace transform
satisfies ∫ ∞

0

e−βxW (q)(x) dx =
1

ψ(β)− q
for β > Φ(q). (7)

Remark 2. Let us make a historical note on the appearance of these formulae.
Identity (3) can be found in Emery (1973) and Bertoin (1996a). Identity (4)
appears in the form of a Fourier transform again in Emery (1973). Identity
(5) first appeared for the case q = 0 in Zolotarev (1964) followed by Takács
(1967) and then with a short proof in Rogers (1990). The case q > 0 was first
given in Bertoin (1996b) for the case of a purely asymmetric stable process
and then again for a general spectrally negative Lévy process in Bertoin (1997)
(who refered to a method used for the case q = 0 in Bertoin (1996a)). Finally
(6) belongs originally to Suprun (1976) with a more modern proof given in
Bertoin (1997).

Remark 3. By changing measure using the exponential martingale, one may
extract identities from the above expressions giving the joint Laplace trans-
form of the time to overshoot and overshoot itself. For example we have for
any v with ψ(v) <∞, u > ψ(v) ∨ 0 and x ∈ R,

Ex

(
e
−uτ−

0
+vX

τ
−

0 1(τ−
0
<∞)

)
= evx

(
Z(p)
v (x) −

p

Φ(p)
W (p)
v (x)

)
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where W
(p)
v and Z

(p)
v are scale functions with respect to the measure P v,

p = u − ψ(v) and p/Φ(p) is understood in the limiting sense if p = 0, as
in (3). In fact, it was shown in Bertoin (1997) that for each x ∈ R, W (q)(x) is
analytically extendable, as a function in q, to the whole complex plane; and
hence the same is true of Z(q)(x). In which case arguing again by analytic
extention one may weaken the requirement that u > ψ(v)∨0 to simply u > 0.

The proof we give of (3) is not new and follows as an easy consequence
of Doob’s optional stopping theorem applied to the exponential martingale;
a technique traditionally attributed to Wald. The proof of the remaining re-
sults in Theorem 1 are a direct consequence of a special martingale which
we shall discuss in Section 5. The proofs of (5), (4) and (6) are given in Sec-
tions 6, 7 and 8 respectively. The structure of this text is based on new results
and methodology for a general class of Markov additive processes given in
Kyprianou and Palmowski (2003).

4 Proof: one sided exit above

Assume that x 6 a and q > 0. Since t ∧ τ+
a 6 t is a bounded stopping time

and Xt∧τ+
a

6 a, it follows from Doob’s Optional Stopping Theorem that

Ex

(
Et∧τ+

a
(Φ(q))

E0(Φ(q))

)
= Ex

(
e
Φ(q)(X

t∧τ
+
a
−x)−q(t∧τ+

a )
)

= 1.

By dominated convergence and the fact that Xτ
+
a

= a on τ+
a <∞ we have,

Ex
(
e−qτ

+
a 1(τ+

a <∞)

)
= e−Φ(q)(a−x). (8)

The case for q = 0 is dealt with by taking the limit as q ↓ 0 in the above
identity.

5 The Kella–Whitt martingale

As already mentioned in the introduction, we shall base our proofs for the
most part on martingale arguments. A martingale which plays a fundamental
role in our calculations is the Kella–Whitt martingale, introduced in Kella and
Whitt (1992). This martingale has close links to so called Kennedy martingales
(cf. Kennedy (1976)). For completeness we shall introduce the Kella–Whitt
martingale in the following theorem.

Theorem 4. Let Xt = sup06u6tXu, and Zt = Xt −Xt, then for α > 0

Mt := ψ(α)

∫ t

0

e−αZs ds+ 1− e−αZt − αXt, t > 0 (9)

is a martingale.
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Proof. Let Et(α) = exp{αXt − ψ(α)t} and note that

dEt(α) = Et−(α)
(
α dXt − ψ(α) dt

)
+

1

2
α2Et−(α) d[X,X ]ct

+ {△Et(α)− αEt−(α)△Xt}.

Note also that

dMt = ψ(α)e−αZt− dt+ αe−αZt− dZt −
1

2
α2e−αZt− d[X,X ]ct

− {△e−αZt + α△Zt} − α dXt

= e−αXt+ψ(α)t
[
ψ(α)Et−(α) dt+ αEt−(α)

(
dXt − dXt

)

−
1

2
α2Et−(α) d[X,X ]ct

− Et−(α){eα△Xt − 1− α△Xt}

− αeαXt−ψ(α)t dXt

]

= e−αXt+ψ(α)t
{
−dEt(α) + α

(
Et(α)− eαXt−ψ(α)t

)
dXt

}
,

where we have used that Xt− = Xt. Since Xt = Xt if and only ifXt increases,
we may write

dMt = e−αXt+ψ(α)t
{
−dEt(α) + α

(
Et(α)− eαXt−ψ(α)t

)
1(Xt=Xt)

dXt

}

= −e−αXt+ψ(α)t dEt(α)

showing that Mt is a local martingale since Et(α) is a martingale. To prove
that M is a martingale, it suffices to show that for each t > 0,

E

(
sup
s6t

|Ms|

)
<∞.

To this end note that since the events
{
Xeq

> x
}

and {τ+
x < eq} are almost

surely equivalent where eq is an exponential distribution with intensity q > 0
independent of X , it follows from (8)

P
(
Xeq

> x
)

= E
(
e−qτ

+
x 1(τ+

x <∞)

)
= e−Φ(q)x

showing that Xeq
is exponentially distributed with parameter Φ(q). It follows

that

E
(
Xeq

)
=

∫ ∞

0

qe−qtE
(
Xt

)
dt =

1

Φ(q)
<∞

and hence, since Xt is an increasing process, we have E
(
Xt

)
< ∞ for all t.

Now note by the positivity of the process Z and again since X increases,
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E

(
sup
s6t

|Ms|

)
6 ψ(α)t + 2 + αE

(
Xt

)
<∞

for each finite t > 0. ⊓⊔

An application involving this martingale, brings us to an identity which is
effectively the Wiener–Hopf factorization in disguise. Alternatively one may
say that the Wiener–Hopf factorization for spectrally negative Lévy processes
brings one to the same conclusion.

Theorem 5. Let Xt = inf06u6tXu and suppose that eq is an exponentially
distributed random variable with parameter q > 0 independent of the process
X. Then for α > 0,

E
(
e
αX

eq

)
=

q(α− Φ(q))

Φ(q)(ψ(α) − q)
. (10)

Proof. We begin by noting some facts which will be used in conjunction with
the martingale (9). Recall that eq is an exponentially distributed random
variable with parameter q > 0 independent of the process X .

First note that by an application of Fubini’s theorem,

E

∫
eq

0

e−αZs ds =

∫ ∞

0

e−qs E
(
e−αZs

)
ds =

1

q
E
(
e−αZeq

)
.

Next we recall a well known result, known as the Duality Lemma, which
can best be verified with a diagram. That is by defining the process {X̃s =
X(t−s)− − Xt : 0 6 s 6 t} as the time reversed Lévy process from the fixed

moment, t, the law of X̃ and {−Xs : 0 6 s 6 t} are the same. In particular,
this means that

− inf
06s6t

Xs
d
= sup

06s6t

X̃s = Xt −Xt.

From Theorem 4 we have that E
(
Meq

)
= EM0 = 0 and hence using the

last two observations we obtain

ψ(α)− q

q
E
(
e
αX

eq

)
= αE

(
Xeq

)
− 1.

Recall from the proof of Theorem 4 that Xeq
is exponentially distributed with

parameter Φ(q). It now follows that

ψ(α) − q

q
E
(
e
αX

eq

)
=
α− Φ(q)

Φ(q)
(11)

and the theorem is proved. ⊓⊔
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Remark 6. Recall that Xeq
is exponentially distributed with parameter Φ(q).

It thus follows that for α < Φ(q)

E
(
eαXeq

)
=

Φ(q)

Φ(q)− α
(12)

and hence (11) reads

E
(
eαXeq

)
E
(
e
αX

eq

)
=

q

q − ψ(α)
= E

(
eαXeq

)
.

which is a conclusion that also follows from the Wiener–Hopf factorization.

In the previous section it was remarked that ψ′(0+) characterizes the
asymptotic behaviour of X . We may now use the results of the previous
Remark and Theorem to elaborate on this point. We do so in the form of
a Lemma.

Lemma 7. We have that

(i) X∞ and −X∞ are either infinite almost surely or finite almost surely,
(ii) X∞ = ∞ if and only if ψ′(0+) > 0,
(iii) X∞ = −∞ if and only if ψ′(0+) 6 0.

Proof. On account of the strict convexity ψ it follows that Φ(0) > 0 if and
only if ψ′(0+) < 0 and hence

lim
q↓0

q

Φ(q)
=

{
0 if ψ′(0+) 6 0
ψ′(0+) if ψ′(0+) > 0.

By taking q to zero in the identity (10) we now have that

E
(
eαX∞

)
=

{
0 if ψ′(0+) 6 0
ψ′(0+)α/ψ(α) if ψ′(0+) > 0.

Next, recall from (12) that for α > 0

E
(
e−αXeq

)
=

Φ(q)

Φ(q) + α

and hence by taking the limit of both sides as q tends to zero,

E
(
e−αX∞

)
=

{
(α/Φ (0) + 1)−1 if ψ′(0+) < 0
0 if ψ′(0+) > 0.

Parts (i)–(iii) follow immediately from the previous two identities by consid-
ering their limits as α ↓ 0. ⊓⊔
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6 Proof: two sided exit above

Our proof first deals with the case that ψ′(0+) > 0 and q = 0, then the case
that q > 0 (no restriction on ψ′(0+)) or q = 0 and ψ′(0) < 0. Finally the case
that ψ′(0+) = 0 and q = 0 is achieved by passing to the limit as q tends to
zero.

Assume then that ψ′(0+) > 0 so that −X∞ is almost surely finite. As
earlier seen in the proof of Lemma 7, by taking q to zero in (10) it follows
that

E
(
eαX∞

)
= ψ′(0)

α

ψ(α)
.

Integration by parts shows that

E
(
eαX∞

)
=

∫

[0,∞)

e−αx P (−X∞ ∈ dx)

= α

∫ ∞

0

e−αxP (−X∞ < x) dx

= α

∫ ∞

0

e−αxPx(X∞ > 0) dx.

Now define the function

W (x) =
1

ψ′(0+)
Px(X∞ > 0). (13)

Clearly W (x) = 0 for x 6 0, is left continuous since it is also equal to the
left continuous distribution function P (−X∞ < x) and therefore is uniquely
determined by its Laplace transform, 1/ψ(α) for all α > 0. [Note: this shows
the existence of the scale function when ψ′(0+) > 0 and q = 0]. A simple
argument using the law of total probability and the Strong Markov Property
now yields for x ∈ (0, a)

Px(X∞ > 0)

= Ex Px(X∞ > 0 | Fτ+
a

)

= Ex

(
1(τ+

a <τ
−

0
)Pa(X∞ > 0)

)
+ Ex

(
1(τ+

a >τ
−

0
)PXτ

−

0

(X∞ > 0)
)

(14)

= Pa(X∞ > 0)Px(τ
+
a < τ−0 ),

where the second term in the second equality disappears as Xτ−
0

6 0 and

Px(X∞ > 0) = 0 for x 6 0. That is to say

Px(τ
+
a < τ−0 ) =

W (x)

W (a)
(15)

and clearly the same equality holds even when x 6 0.
Now assume that q > 0 or ψ′(0) < 0 and q = 0. In this case, by convexity

of ψ, we know that Φ(q) > 0 and hence ψ′
Φ(q) (0) = ψ′ (Φ(q)) > 0 (again
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by convexity). Changing measure using the Girsanov density, we have for
x ∈ (0, a)

Ex

(
e−qτ

+
a 1(τ+

a <τ
−

0
)

)
= Ex

(
Eτ+

a
(Φ(q))

E0(Φ(q))
1(τ+

a <τ
−

0
)

)
e−Φ(q)(a−x)

= e−Φ(q)(a−x)PΦ(q)
x

(
τ+
a < τ−0

)
.

According to our previous calculations for the case that q = 0 and ψ′(0+) > 0,
we can now identify

Ex

(
e−qτ

+
a 1(τ+

a <τ
−

0
)

)
=
W (q)(x)

W (q)(a)
(16)

such that W (q)(x) = eΦ(q)xWΦ(q)(x) where WΦ(q)(x) is identically zero on
(−∞, 0], is left continuous and has Laplace transform 1/ψΦ(q)(α) for all α > 0.

Taking Laplace transforms of W (q)(x) it appears now that for α > Φ(q),

∫ ∞

0

e−αxW (q)(x) dx =

∫ ∞

0

e−(α−Φ(q))xWΦ(q)(x) dx

=
1

ψΦ(q)(α − Φ(q))

=
1

ψ(α)− q
, (17)

where in the last equality we have used the fact that for c > 0, ψc(θ) =
ψ(θ+c)−ψ (c). [Note again that this last calculation again justifies that W (q)

exists for the regime that we are considering.]
As mentioned at the beginning of the proof, the final missing case of X not

drifting to infinity (ie ψ′(0+) = 0) and q = 0 is achieved by passing to the limit
as q ↓ 0. Since WΦ(q) has Laplace transform 1/ψΦ(q) for q > 0, integration by
parts reveals that

∫

(0,∞)

e−βxWΦ(q)(dx) =
β

ψΦ(q)(β)
. (18)

One may appeal to the Extended Continuity Theorem for Laplace Transforms,
see Feller (1971) Theorem XIII.1.2a, and (18) to deduce that since

lim
q↓0

∫

(0,∞)

e−βxWΦ(q)(dx) =
β

ψ(β)

then there exists a measureW ∗ such that in the weak senseW ∗ = limq↓0WΦ(q)

and ∫

(0,∞)

e−βxW ∗(dx) =
β

ψ(β)
.

Integration by parts shows that its left continuous distribution,
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W (x) := W ∗(−∞, x) = lim
q↓0

W (q)(x)

satisfies ∫ ∞

0

e−βxW (x) dx =
1

ψ(β)
(19)

for β > 0. Considering the limit as q ↓ 0 in (16) and remembering that
W (q)(x) = eΦ(q)xWΦ(q)(x) we recover the required identity (15).

7 Proof: one sided exit below

Taking (17) and (18) into account, we can interpret (10) as saying that

P
(
−X

eq
∈ dx

)
=

q

Φ(q)
W (q)(dx) − qW (q)(x) dx

and hence with an easy manipulation, for x > 0

Ex
(
e−qτ

−

0 1(τ−
0
<∞)

)
= Px

(
eq > τ−0

)

= Px
(
X

eq
< 0

)

= 1 + q

∫ x

0

W (q)(y) dy −
q

Φ(q)
W (q)(x)

= Z(q)(x) −
q

Φ(q)
W (q)(x). (20)

Note that since Z(q)(x) = 1 and W (q)(x) = 0 for all x ∈ (−∞, 0], the state-
ment is valid for all x ∈ R. The proof is now complete for the case that
q > 0.

Recalling that limq↓0 q/Φ(q) is either ψ′(0+) or zero, the proof is completed
by taking the limit in q.

8 Proof: two sided exit below

Fix q > 0. The Strong Markov Property together with the identity (20) give
us that

Px

(
X

eq
< 0

∣∣∣ Ft∧τ+
a ∧τ

−

0

)

= e−q(t∧τ
+
a ∧τ

−

0
) PX

t∧τ
+
a ∧τ

−

0

(
X

eq
< 0

)

= e−q(t∧τ
+
a ∧τ

−

0
)

(
Z(q)

(
Xt∧τ+

a ∧τ
−

0

)
−

q

Φ(q)
W (q)

(
Xt∧τ+

a ∧τ
−

0

))

showing that the right hand side is a martingale for t > 0. Note also that with a
similar methodology we have (using that W (q)

(
Xτ

−

0
∧τ+

a

)
= 1(τ+

a <τ
−

0
)W

(q)(a))
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Ex

(
e−qτ

+
a 1(τ+

a <τ
−

0
)

∣∣∣ Ft∧τ+
a ∧τ

−

0

)

= 1(t<τ−
0
∧τ+

a )e
−qtEXt

(
e−qτ

+
a 1(τ+

a <τ
−

0
)

)
+ 1(t>τ−

0
∧τ+

a )e
−qτ+

a 1(τ+
a <τ

−

0
)

= 1(t<τ−
0
∧τ+

a )e
−qt W

(q)(Xt)

W (q)(a)
+ 1(t>τ−

0
∧τ+

a )e
−q(τ−

0
∧τ+

a )
W (q)(Xτ

−

0
∧τ+

a
)

W (q)(a)

= e−q(t∧τ
+
a ∧τ

−

0
)
W (q)(Xt∧τ−

0
∧τ+

a
)

W (q)(a)

showing again that the right hand side is a martingale for t > 0.
Now it follows by linearity that

e−q(t∧τ
+
a ∧τ

−

0
)

(
Z(q)

(
Xt∧τ+

a ∧τ
−

0

)
−
Z(q)(a)

W (q)(a)
W (q)

(
Xt∧τ+

a ∧τ
−

0

))

is also a martingale for t > 0. In fact it is a uniformly integrable martingale
and hence its terminal expectation is equal to its initial expectation. That is
to say

Ex

(
e−q(τ

+
a ∧τ

−

0
)

(
Z(q)

(
Xτ

+
a ∧τ

−

0

)
−
Z(q)(a)

W (q)(a)
W (q)

(
Xτ

+
a ∧τ

−

0

)))

= Ex

(
e−qτ

−

0 1(τ+
a >τ

−

0
)

)

= Z(q)(x)−
Z(q)(a)

W (q)(a)
W (q)(x),

where as usual we have used the fact that

Z(q)
(
Xτ

+
a ∧τ

−

0

)
= 1 and W (q)

(
Xτ

+
a ∧τ

−

0

)
= 0 if τ−0 < τ+

a ,

and

Z(q)
(
Xτ

+
a ∧τ

−

0

)
= Z(q)(a) and W (q)

(
Xτ

+
a ∧τ

−

0

)
= W (q)(a) if τ−0 > τ+

a .

For the case that q = 0, we again take limits as q tends to zero.

9 Final Remarks

We conclude with some final remarks concerning some more subtle points of
the calculations we have made which are not necessarily immediately obvious.
The definition of τ−x = inf{t > 0 : Xt 6 x} requiring weak first passage
below the level x forces the definition of W proportional to Px(X∞ > 0) in
the case that q = 0 and ψ′(0+) > 0 in (13). This in turn determines the left
continuity of W (q) for all q > 0, a fact which is seen to be of importance in the
calculation (14) as well as later, for example in Section 8, where it is stated that
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W (q)(Xτ
−

0
∧τ+

a
) = 1(τ+

a <τ
−

0
). However, Bertoin (1997) works with a definition

of strong first downward passage equivalent to τ−x = inf{t > 0 : Xt < x}.
Following the analysis here one sees in (13) that W should then be taken as

W (x) =
1

ψ′(0+)
Px

(
X∞ > 0

)
=

1

ψ′(0+)
P
(
−X∞ 6 x

)
.

But then, if 0 is irregular for (−∞, 0) for X we have P (τ−0 > τ+
a ) > 0, which

itself is a result of the definition of τ−0 in the strong sense. The effect of
this definition is that W (q) is now right continuous. None the less, with very
subtle adjustments, all the arguments go through as presented. An example
of a calculation which needs a little extra care is (14).

In this case, it is possible that Xτ
−

0

= 0 with positive probability, that is to

say X may creep downwards over zero, and hence in principle the second term
in (14) may not be zero. However, it is known that spectrally negative Lévy
processes may only creep downwards if and only if a Gaussian component is
present (cf. Bertoin (1996a) p. 175). In this case P (X∞ > 0) = 0 anyway and
the calculation goes through.

To some extent, it is more natural to want work with the right continuous
version of W (q) because one captures the probability of starting at the origin
and escaping at a before entering (−∞, 0) in the expression W (0)/W (a) as
opposed to W (0+)/W (a) for the left continuous case. However we promised in
the introduction a self contained approach to our results which avoids the use
of the Wiener–Hopf factorization. Hence we have opted to present the case
of left continuity in W (q) thus avoiding the deeper issue of creeping, which is
intimately connected to the Wiener–Hopf factorization.

For other recent perspectives and new proofs of existing results concerning
fluctuation theory of spectrally negative Lévy processes see Doney (2004),
Pistorius (2004) and Nguyen-Ngoc and Yor (2004).
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