Economathematics

Problem Sheet 3

Zbigniew Palmowski

1. Prove that if X has a gaussian distribution $N(m, \sigma^2)$ then

$$E\left(e^{aX}\mathbf{1}_{\{X\geqslant k\}}\right) = e^{am+a^2\sigma^2/2}\Phi(d),$$

where $d = \sigma^{-1}(-k + m + a\sigma^2)$ and $\Phi(x)$ is a distribution function of the standard gaussian random variable.

- 2. Using above problem find the price of an European call option in the Black-Scholes market.
- 3. Prove that if X has a gaussian distribution $N(m, \sigma^2)$ then the random variable $Y = e^X$ has a mean $e^{m+\sigma^2/2}$ and variance $e^{2m+\sigma^2}(e^{\sigma^2}-1)$.
- 4. In the binomial lattice model (BLM), the price of asset at time n equals $S_n = S_0 \prod_{i=1}^n Y_i$ where Y_i are i.i.d. r.v.s. distributed as P(Y = u) = 1 - P(Y = d) = p for d < 1 + r < uand r being an interest rate. Check that for any fixed time t we can re-write Black-Scholes continuous time asset price S_t as a similar i.i.d. product by dividing the interval (0, t] into n equally sized subintervals $(0, t/n], (t/n, 2t/n], \dots, ((n-1)t/n, t]$. Defining $t_i = it/n$, and $L_i = S_{t_i}/S_{t_{i-1}}$ the random variable L_i can be approximated by Y_i (give some arguments based on CLT). What u, d, p should we choose (assume that additionally ud = 1)? Recall how the risk-neutral probability p looks like. How is it related with SDE defining S_t in Black-Scholes model under the martingale measure?
- 5. Find the expression for Δ in the Black-Scholes market.
- 6. Find the expression for Γ in the Black-Scholes market.
- 7. Find the expression for \mathcal{V} in the Black-Scholes market.
- 8. Find the expression for ρ in the Black-Scholes market.
- 9. We give here heuristic (imprecise, original Black-Scholes) proof of Black-Scholes differential equation. Consider portfolio with one option (long position) and some amount Δ (in practice later is not fixed in time !) of underlying asset (short position). Its price we denote as Π. It is equal to

$$\Pi = V(S, t) - \Delta S,$$

where V(S, t) is option price for asset S, and S denote price of underlying asset. Using Itô formula check that random part in formula for $d\Pi$ is $(\frac{\partial V}{\partial S} - \Delta) dS$. We can delete risk if $\Delta = \frac{\partial V}{\partial S}$ (*delta hedging*). Show that, assuming no-arbitrage condition on market, price of our hedging portfolio satisfy $d\Pi = r\Pi dt$, where r > 0 is interest rate. Derive the *Black-Scholes equation*

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + rS \frac{\partial V}{\partial S} - rV = 0 \tag{1}$$

if $dS = \mu S dt + \sigma S dW$, where W is a standard Brownian motion.

- 10. Derive equation for option price on stock S which pays dividend D continuously (e.g. in the same, short way as above).
- 11. Derive equation for option price on currency assuming continuous interest rates of level r and r'. That is, in holding the foreign currency we receive interest at the foreign rate of interest r'.
- 12. Derive equation for option price on row material assuming constant cost of storage (*cost of carry*) which equals to q. To be precise, for each unit of the commodity held an amount $qS_t dt$ will be required during short time dt to finance the holding.
- 13. Derive equation for option price on futures contract. Recall that the future price of a non-dividend paying equity F is related to the spot price by

$$F = e^{r(T-t)}S_T$$

where T is the maturity date of the futures contract.

- 14. Find formula for option price on asset with continuous dividend D. To do that, substitute $S'_t = S_t e^{Dt}$ and observe that the European call option price is the price for the basic call option substituting $S'_t e^{-D(T-t)}$ in the place of S_t .
- 15. Assume that some bank sells 10^6 European call options. Assume that the starting price of underlying asset is $S_0 = 50$, strike is K = 52, r = 2,5%, T = 1/3 and $\sigma = 22,5\%$. Calculate Black-Scholes price for this option. Consider two positions, described below, which bank can take and for each calculate its net premium at maturity T:

Covered position: At time 0 bank buys 10^6 underlying assets by price S_0 . When this position can be profitable?

Naked position: At maturity T bank buys 10^6 underlying assets and sells them to options holders. When this position can be profitable?

- 16. Consider uncertain but fixed parameters. Derive the bounds in the Black-Scholes formula when volatility lies within the band $\sigma \in [\sigma^-, \sigma^+]$.
- 17. Similarly, derive the bounds when interest rate r > 0 lies within the band $r \in [r^-, r^+]$.
- 18. Derive the bounds for the option on currency when foreign interest rate $r_f > 0$ lies within the band $r_f \in [r_f^-, r_f^+]$.

- 19. Derive the bounds when asset pays dividend D in continuous way and D lies within band $D \in [D^-, D^+]$.
- 20. Consider American put option without maturity (perpetual American put) see e.g. chapter 9 Early exercise and American option from P. Wilmott book 'Paul Wilmott on Quantitative Finance' mentioned during lecture. Let V be the price function. Why we can assume that V does not depend on time? Why function V must satisfy following condition

$$V(S) \ge \max(E - S, 0),$$

where E is strike price?

21. Let V be price of *perpetual American put*. Prove that V satisfy following equation

$$\frac{1}{2}\sigma^2 S^2 \frac{\mathrm{d}^2 V}{\mathrm{d}S^2} + rS \frac{\mathrm{d}V}{\mathrm{d}S} - rV = 0 \tag{2}$$

if S follows Black-Scholes model. General solution of (2) is given by $V(S) = C_1 S + C_2 S^{-2r/\sigma^2}$, where C_1, C_2 are constants. Show that for perpetual American put we have: $C_1 = 0$ and $C_2 = \frac{\sigma^2}{2r} \left(\frac{E}{1+\sigma^2/2r}\right)^{1+2r/\sigma^2}$ (to do this find point S^* which $V(S^*) = \max_{S \ge S^*} V(S)$).

22. Consider *perpetual American call* with price function V. Assume the continuous dividend D. Show that function V satisfies

$$\frac{1}{2}\sigma^2 S^2 \frac{d^2 V}{dS^2} + (r - D)S \frac{dV}{dS} - rV = 0.$$
(3)

Show that general solution of (3) is $V(S) = AS^{\alpha^+} + BS^{\alpha^-}$ for constants A, B and

$$\alpha^{\pm} = \frac{1}{\sigma^2} \Big(-(r-D - \frac{1}{2}\sigma^2) \pm \sqrt{(r-D - \frac{1}{2}\sigma^2)^2 + 2r\sigma^2} \Big).$$

For perpetual American call $V(S) = AS^{\alpha^+}$. Find A and optimal time to exercise S^* . From that notice that for dividend equal to zero the optimal time is infinity.

- 23. Show that price for *perpetual American put* with continuous dividend D is given by $V(S) = BS^{\alpha^-}$. Find constant B and point for optimal exercise S^* .
- 24. Show that for price C of American call option with maturity T and strike E the following inequality is satisfied

$$C \geqslant S - Ee^{-r(T-t)}$$

25. Consider American options put and call with prices P and C, with the maturity T and strike E. Prove that

$$C - P \leqslant S - Ee^{-r(T-t)}.$$

Additionally show that $S - E \leq C - P$ (here we ignore influence of interest rate).

26. Let V = V(t;T) be a price of an obligation with the deterministic interest rate r = r(t) > 0 and the maturity date T. Additionally we assume that the bond has coupon payments with respect to the function K(t). If the bond at time T pays X, what is the value of V(T;T)? If we have one bond in our portfolio, the change in time dt is

$$\left(\frac{\mathrm{d}V}{\mathrm{d}t} + K(t)\right)\mathrm{d}t$$

Using no-arbitrage condition show, that V fulfills the following equation:

$$\frac{\mathrm{d}V}{\mathrm{d}t} + K(t) = r(t)V.$$

Additionally, using the boundary condition, prove that the solution is of the following form: T_{1}

$$V(t;T) = e^{-\int_t^T r(\tau) \mathrm{d}\tau} \left(X + \int_t^T K(s) e^{\int_s^T r(\tau) \mathrm{d}\tau} \mathrm{d}s \right).$$
(4)

27. Consider that we have now a zero-coupon bond, i.e. K(t) = 0. From the equation (4) we have that

$$V(t;T) = Xe^{-\int_t^T r(\tau)d\tau}.$$

Assume that the function V(t;T) is differentiable with respect to T. Prove that

$$r(T) = -\frac{1}{V(t;T)} \frac{\partial V}{\partial T}.$$

What we can deduce from above equation?

28. Assume that we would like to hedge price of bond A, which YTM is equal to y_A , using another bond B, with YTM y_B . Assume that change in time of y_A imply proportional change of y_b , i.e. $dy_A = c \cdot dy_B$, for some constant c. Assume that we have bond A and some Δ bonds B in our portfolio

$$\Pi = V_A(y_A) - \Delta V_B(y_B).$$

How we should choose Δ to hedge against YTM's changes?

29. Prove that the solution for the short term return rate r_t in the Vasicek model:

$$dr_t = (a - br_t)dt + \sigma dW_t$$

has the following form:

$$r_t = r_s e^{-b(t-s)} + \frac{a}{b} \left(1 - e^{-(bt-s)} \right) + \sigma \int_s^t e^{-b(t-u)} dW_u.$$
(5)

30. Prove that in the Vasicek model (5) the conditional law of r_t with respect of the natural history \mathcal{F}_s is gaussian with the conditional expectation:

$$E[r_t|\mathcal{F}_s] = r_s e^{-b(t-s)} + \frac{a}{b} \left(1 - e^{-b(t-s)}\right)$$

and the conditional variance:

$$\operatorname{Var}[r_t | \mathcal{F}_s] = \frac{\sigma^2}{2b} \left(1 - e^{-2b(t-s)} \right)$$

31. Prove that

$$\lim_{t \to \infty} E[r_t | \mathcal{F}_s] = \frac{a}{b}$$

and

$$\lim_{t \to \infty} \operatorname{Var}[r_t | \mathcal{F}_s] = \frac{\sigma^2}{2b}.$$

- 32. Using partial differential equations find the price of zero-coupon bond in the Vasicek model.
- 33. Let the volatility coefficients $b(\cdot, T)$ and $b(\cdot, U)$ of the zero-coupon bonds be bounded functions. Prove that for $0 \le t < T$ the arbitrage price of European call option with expiration time T > 0 and strike price K > 0 on the bond with maturity date $U \ge T$ is given by:

$$C_t = B(t, U)N(h_1(B(t, U), t, T)) - KB(t, T)N(h_2(B(t, U), t, T)),$$

where

$$h_{1/2}(b,t,T) = \frac{\log(b/K) - \log B(t,T) \pm \frac{1}{2}v_U^2(t,T)}{v_U(t,T)}$$

for

$$v_U^2(t,T) = \int_t^T |b(u,U) - b(u,T)|^2 du.$$

34. Assume that the asset price under the spot martingale measure spot has the following evolution:

$$dS_t = S_t(r_t dt + \sigma(t) dW_t),$$

where σ is a bounded function. Prove that if the volatility $b(\cdot, T)$ is bounded then the arbitrage price of call option is given by:

$$C_t = S_t \mathcal{N}(h_1(S_t, t, T) - KB(t, T)\mathcal{N}(h_2(S_t, t, T))),$$

where

$$h_{1/2}(b,t,T) = \frac{\log(b/K) - \log B(t,T) \pm \frac{1}{2}v_S^2(t,T)}{v_S(t,T)}$$

for

$$v_S^2(t,T) = \int_t^T |\sigma(u) - b(u,T)|^2 du.$$

35. Assume that we can take derivative under the expectation sign. Prove that forward return rate is related with short rate via:

$$f(t,T) = \frac{E_{P^*}[r(T)\exp\{-\int_t^T r_s ds\}]}{E_{P^*}[\exp\{-\int_t^T r_s ds\}]},$$

where P^* is the spot martingale measure. Hence indeed we have $r_t = f(t, t)$.

- 36. Consider two sides: A and B, that signed the following contract. A invests K in the financial instrument that gives return rate R. After time T A pays B the amount $K_A K$ where K_A is a investment value of A after time T. Similarly, B invests K in the financial instrument with stochastic return rate r_t and pays its value after time T to A. Find the swap rate R.
- 37. Find stationary distribution of the interests rate in the Vasicek model. Prove that is density solves invariant Fokker-Planck equation (without increment with $\partial/\partial t$).
- 38. In consolidated bonds we pay a unit at time dt. In other words, its price can be described as follows:

$$C(t) = \int_t^\infty B(t, u) \, du.$$

Assume that bond price solves the following SDE:

$$dB(t,T) = B(t,T)r_t dt + B(t,T)b(t,T)dW_t.$$

Prove that C solves:

$$dC(t) = (C(t)r_t - 1)dt + \sigma_C(t)dW_t,$$

where $\sigma_C(t) = \int_t^\infty B(t, u) b(t, u) \, du$.

39. Consider the national (PLN) and foreign (EUR) bonds $B_d(t,T)$ and $B_f(t,T)$. Assume that both satisfy HJM model with forward rates f_d and f_f :

$$df_d(t,T) = \alpha_d(t,T)dt + \sigma_d(t,T)dW_t,$$

$$df_d(t,T) = \alpha_f(t,T)dt + \sigma_f(t,T)dW_t.$$

Let the exchange rate X (PLN/EUR) has the following dynamics:

$$dX(t) = \mu(t)X(t)dt + X(t)\sigma_X(t)dW_t.$$

Prove that under the martingale measure of the national currency (PLN) the foreign forward rate satisfies the following drift condition:

$$\alpha_f(t,T) = \sigma_f(t,T) \left(\int_t^T \sigma_f(t,u) du - \sigma_X(t) \right).$$

40. Assume, that dynamic of interest rate r is given by following stochastic differential equation:

$$dr = u(r,t)dt + w(r,t)dW,$$
(6)

where W is standard Brownian motion, u and w are some set functions. Let V(r, t; T) denote price of bond at time t with interest rate r and with maturity T. Consider portfolio Π of bond with maturity T_1 and $-\Delta$ of bond with maturity T_2 :

$$\Pi = V_1 - \Delta V_2,$$

where V_i is the price at T_i (i = 1, 2). Using no-arbitrage property $(d\Pi = r\Pi dt)$, Itô formula and choosing appropriate Δ show that

$$\frac{\frac{\partial V_1}{\partial t} + \frac{1}{2}w^2\frac{\partial^2 V_1}{\partial r^2} - rV_1}{\frac{\partial V_1}{\partial r}} = \frac{\frac{\partial V_2}{\partial t} + \frac{1}{2}w^2\frac{\partial^2 V_2}{\partial r^2} - rV_2}{\frac{\partial V_2}{\partial r}}.$$
(7)

Assume, that left and right hand side of equation (7) do not depend on T, so we can eliminate indexes and write

$$\frac{\frac{\partial V}{\partial t} + \frac{1}{2}w^2\frac{\partial^2 V}{\partial r^2} - rV}{\frac{\partial V}{\partial r}} = a(r,t)$$

for some function a. Show that we can rewrite a to $a(r,t) = \lambda(r,t)w(r,t) - u(r,t)$ for some function λ . Taking this a we can rewrite BS formula to

$$\frac{\partial V}{\partial t} + \frac{1}{2}w^2\frac{\partial^2 V}{\partial r^2} + (u - \lambda w)\frac{\partial V}{\partial r} - rV = 0.$$
(8)

41. Consider portfolio with only one bond with price V(r,t;T). Calculate dV from Itô formula and using equation (8) show, that

$$\mathrm{d}V - rV\mathrm{d}t = w\frac{\partial V}{\partial r}(\mathrm{d}X + \lambda\mathrm{d}t).$$

How we can interpret the $\lambda(r, t)$ function (it is market price of risk)?

42. When deriving Black-Scholes formula we construct portfolio with option and $-\Delta$ of asset. This time consider portfolio with two options (with prices $V_1(S,t)$, $V_2(S,t)$) and different maturities (or different strikes). We have $\Pi = V_1 - \Delta V_2$. Using the same argument as before show that

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + (\mu - \lambda_S \sigma) S \frac{\partial V}{\partial S} - rV = 0.$$
(9)

Note that it has the same form like equation (8). Function V = S has to fulfill equation (9) (why?). Rewriting the formula for V = S we get

$$\lambda_S = \frac{\mu - r}{\sigma}.$$

This is market price of risk for asset. What we will get when we use this λ_S in equation (9)?

43. Assume that the solution of (8) is of form $V(r,t;T) = e^{A(t;T) - rB(t;T)}$. Use this function in (8) to rewrite the Black-Scholes formula:

$$\frac{\partial A}{\partial t} - r\frac{\partial B}{\partial t} + \frac{1}{2}w^2B^2 - (u - \lambda w)B - r = 0.$$
⁽¹⁰⁾

Taking second order derivative with respect to r show that

$$\frac{1}{2}B\frac{\partial^2(w^2)}{\partial r^2} - \frac{\partial^2(u-\lambda w)}{\partial r^2} = 0.$$

Prove that

$$\begin{cases} \frac{\partial^2(w^2)}{\partial r^2} = 0\\ \frac{\partial^2(u-\lambda w)}{\partial r^2} = 0. \end{cases}$$

Solve above equations. Show that

$$u(r,t) - \lambda(r,t)w(r,t) = \eta(t) - r\gamma(t)$$
(11)

$$w(r,t) = \sqrt{r \alpha(t) + \beta(t)}.$$
 (12)

for some functions $\alpha, \beta, \gamma i \eta$.

44. Using (11) and (12) in (10) derive formulas for A and B:

$$\frac{\partial A}{\partial t} = \eta(t)B - \frac{1}{2}\beta(t)B^2 \tag{13}$$

$$\frac{\partial B}{\partial t} = \frac{1}{2}\alpha(t)B^2 + \gamma(t)B - 1.$$
(14)

From the boundary condition deduce that A(T;T) = B(T;T) = 0.

- 45. Assume that α, β, γ i η are constant. Solve equations (13) and (14).
- 46. Consider the asset price process of the following form:

$$\mathrm{d}S = \mu S \mathrm{d}t + \sigma S \mathrm{d}W_1,$$

where σ is volatility with dynamics given by

$$\mathrm{d}\sigma = p(S, t, \sigma)\mathrm{d}t + q(S, t, \sigma)\mathrm{d}W_2,$$

where W_1, W_2 are two standard Brownian motions and $\mathbb{E}(dW_1 dW_2) = \rho dt$ (correlation is ρ). Consider portfolio with two options V, V_1 :

$$\Pi = V - \Delta S - \Delta_1 V_1.$$

Using no-arbitrage property, using Itô formula and taking appropriate Δ i Δ_1 derive Black-Scholes equation:

$$\frac{\partial V}{\partial t} + \frac{1}{2}\sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} + \rho\sigma Sq \frac{\partial^2 V}{\partial S\partial \sigma} + \frac{1}{2}q^2 \frac{\partial^2 V}{\partial \sigma^2} + rS \frac{\partial V}{\partial S} + (p - \lambda q) \frac{\partial V}{\partial \sigma} - rV = 0.$$
(15)

The function λ is called *market price of volatility risk*.

47. (*Heston model*) Consider model

$$\mathrm{d}S = \mu S \mathrm{d}t + \sqrt{\nu} S \mathrm{d}W_1$$

where

$$d\nu = (\theta - \nu)\kappa dt + c\sqrt{\nu} dW_2, \qquad (16)$$

with parameters μ,κ,θ,c and assume that $\mathbb{E}(\mathrm{d} X_1\mathrm{d} X_2)=\rho\,\mathrm{d} t$. Show that

$$\frac{\partial V}{\partial t} + \mathcal{L}V - rV = 0, \tag{17}$$

where

$$\mathcal{L}V = \frac{1}{2}\nu S^2 \frac{\partial^2 V}{\partial S^2} + \rho c\nu S \frac{\partial^2 V}{\partial S \partial \nu} + \frac{1}{2}c^2 \nu \frac{\partial^2 V}{\partial \nu^2} + rS \frac{\partial V}{\partial S} + \left((\theta - \nu)\kappa - c\sqrt{\nu}\lambda(S, t, \nu)\right) \frac{\partial V}{\partial \nu}.$$

48. Derive the Black-Scholes formula for $X = \ln S$ for S given in the previous problem.